设w=f(x+y+z,xyz),其中函数f有二阶连续偏导数,求∂w/∂x和∂^2w/∂x∂z
∂^2w/∂x∂z这个怎么求?∂w/∂x和∂w/∂z都算出来了,分别是f'1+yzf'...
∂^2w/∂x∂z这个怎么求?
∂w/∂x和∂w/∂z都算出来了,分别是f'1+yzf'2和f'1+xyf'2,接下来怎么算出∂^2w/∂x∂z?
请说的详细一些,在线等,50分~ 展开
∂w/∂x和∂w/∂z都算出来了,分别是f'1+yzf'2和f'1+xyf'2,接下来怎么算出∂^2w/∂x∂z?
请说的详细一些,在线等,50分~ 展开
2个回答
展开全部
令u=x+y+z,v=xyz
∂f/∂u=f'1,∂f/∂v=f'2
∂w/∂x=∂f/∂u*∂u/∂x+∂f/∂v*∂v/∂x (∵∂u/∂x=1,∂v/∂x=yz)
=f'1+yzf'2
∂2w/∂x∂z=∂(∂w/∂x)/∂z=∂f'1/∂z+yf'2+yz∂f'2/∂z
yf'2+yz∂f'2/∂z是yzf'2对z的导数,由导数的乘法法则得到。
是否可以解决您的问题?
∂f/∂u=f'1,∂f/∂v=f'2
∂w/∂x=∂f/∂u*∂u/∂x+∂f/∂v*∂v/∂x (∵∂u/∂x=1,∂v/∂x=yz)
=f'1+yzf'2
∂2w/∂x∂z=∂(∂w/∂x)/∂z=∂f'1/∂z+yf'2+yz∂f'2/∂z
yf'2+yz∂f'2/∂z是yzf'2对z的导数,由导数的乘法法则得到。
是否可以解决您的问题?
追问
木有,你这个回答我看过了。没看明白,还是不清楚这个yf'2怎么来的。你能帮我解释一下么?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询