第八题求解。详细过程
1个回答
展开全部
解:∵二次函数的图象开口向上,
∴a>0,
∵对称轴在y轴的左边,
∴-b/2a <0,
∴b>0,
∵图象与y轴的交点坐标是(0,-2),过(1,0)点,
代入得:a+b-2=0,
∴a=2-b,b=2-a,
∴y=ax2+(2-a)x-2,
当x=-1时,y=a-b+c=a-(2-a)-2=2a-4,
∵b>0,
∴b=2-a>0,
∴a<2,
∵a>0,
∴0<a<2,
∴0<2a<4,
∴-4<2a-4<0,
即-4<P<0,
∴a>0,
∵对称轴在y轴的左边,
∴-b/2a <0,
∴b>0,
∵图象与y轴的交点坐标是(0,-2),过(1,0)点,
代入得:a+b-2=0,
∴a=2-b,b=2-a,
∴y=ax2+(2-a)x-2,
当x=-1时,y=a-b+c=a-(2-a)-2=2a-4,
∵b>0,
∴b=2-a>0,
∴a<2,
∵a>0,
∴0<a<2,
∴0<2a<4,
∴-4<2a-4<0,
即-4<P<0,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询