在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD.则以下结论中一定正确的个数有(

在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD.则以下结论中一定正确的个数有()①EF=FD;②AD:AB=AE:AC;③△DE... 在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD.则以下结论中一定正确的个数有(  )①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形;④BE+CD=BC;⑤当∠ABC=45°时,BE= 2 DE. A.2个 B.3个 C.4个 D.5个 展开
 我来答
我恨裤兜梻咁搴
推荐于2016-03-28 · TA获得超过167个赞
知道答主
回答量:197
采纳率:60%
帮助的人:69.3万
展开全部
①∵BD、CE为高,∴△BEC、△BDC是直角三角形.
∵F是BC的中点,∴EF=DF=
1
2
BC.故正确;
②∵∠ADB=∠AEC=90°,∠A公共,∴△ABD △ACE,得AD:AB=AE:AC.故正确;
③∵∠A=60°,∴∠ABC+∠ACB=120°.
∵F是BC的中点,∴EF=BF,DF=CF.∴∠ABF=∠BEF,∠ACB=∠CDF.
∴∠BFE+∠CFD=120°,∠EFD=60°.又EF=FD,∴△DEF是等边三角形.故正确;
④若BE+CD=BC,则可在BC上截取BH=BE,则HC=CD.
∵∠A=60°,∴∠ABC+∠ACB=120°.又∵BH=BE,HC=CD,
∴∠BHE+∠CHD=120°,∠EHD=60°.


所以存在满足条件的点,假设成立,但一般情况不一定成立,故错误;
⑤当∠ABC=45°时,在Rt△BCE中,BC=
2
BE,在Rt△ABD中,AB=2AD,
由B、C、D、E四点共圆可知,△ADE △ABC,
DE
BC
=
AD
AB
=
1
2
,即
DE
2
BE
=
1
2
,∴BE=
2
DE,故正确;
故此题选C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式