
P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是( )A.
P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP...
P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是( )A.OP1⊥OP2B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2
展开
1个回答
展开全部
∴OP1=OP2=OP,
∠AOP=∠AOP1,∠BOP=∠BOP2,
∴∠P1OP2=∠AOP+∠AOP1+∠BOP+∠BOP2,
=2(∠AOP+∠BOP),
=2∠AOB,
∵∠AOB度数任意,
∴OP1⊥OP2不一定成立.
故选B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询