已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M

已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.(1)当∠MAN绕点A旋转到BM=DN时(如图1... 已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.(1)当∠MAN绕点A旋转到BM=DN时(如图1),求证:BM+DN=MN;(2)当∠MAN绕点A旋转到BM≠DN时(如图2),则线段BM,DN和MN之间数量关系是______;(3)当∠MAN绕点A旋转到如图3的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?并对你的猜想加以说明. 展开
 我来答
SE127
2014-09-28 · 超过60用户采纳过TA的回答
知道答主
回答量:170
采纳率:50%
帮助的人:62万
展开全部
(1)证明:如图1,延长CB至E使得BE=DN,连接AE,
∵四边形ABCD是正方形,
∴AB=AD,∠D=∠ABC=90°=∠ABE,
在△ADN和△ABE中
AD=AB
∠D=∠ABE
DN=BE

△ABE≌△ADN(SAS),
∴∠BAE=∠DAN,AE=AN,
∴∠EAN=∠BAE+∠BAN=∠DAN+∠BAN=90°,
∵∠MAN=45°,
∴∠EAM=∠MAN,
∵在△EAM和△NAM中
AE=AN
∠EAM=∠NAM
AM=AM

∴△EAM≌△NAM,
∴MN=ME,
∵ME=BM+BE=BM+DN,
∴BM+DN=MN;

(2)线段BM,DN和MN之间数量关系是BM+DN=MN,理由如下:
延长CB至E,使得BE=DN,连接AE,
∵四边形ABCD是正方形,
∴AB=AD,∠D=∠ABC=90°=∠ABE,
在△ADN和△ABE中,
AD=AB
∠D=∠ABE
DN=BE

∴△ABE≌△ADN(SAS),
∴∠BAE=∠DAN,AE=AN,
∴∠EAN=∠BAE+∠BAN=∠DAN+∠BAN=90°,
∵∠MAN=45°,
∴∠EAM=∠MAN,
∵在△EAM和△NAM中
AE=AN
∠EAM=∠NAM
AM=AM

∴△EAM≌△NAM,
∴MN=ME,
∵ME=BM+BE=BM+DN,
∴BM+DN=MN,
故答案为:BM+DN=MN;

(3)DN-BM=MN,理由如下:
如图3,在DC上截取DE=BM,连接AE,
由(1)知△ADE≌△ABM(SAS),
∴∠DAE=∠BAM,AE=AM,
∴∠EAM=∠BAM+∠BAE=∠DAE+∠BAE=90°,
∵∠MAN=45°,
∴∠EAN=∠MAN.
∵在△MAN和△EAN中,
AE=AM
∠MAN=∠EAN
AN=AN

∴△MAN≌△EAN(SAS),
∴EN=MN,
即DN-DE=MN,
∴DN-BM=MN.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式