(2007?鄂尔多斯)如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的边于G,F,E点.
(2007?鄂尔多斯)如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的边于G,F,E点.求证:(1)F是BC的中点;(2)∠A=∠GE...
(2007?鄂尔多斯)如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的边于G,F,E点.求证:(1)F是BC的中点;(2)∠A=∠GEF.
展开
展开全部
证明一:
(1)连接DF,∵∠ACB=90°,D是AB的中点悔唤,
∴BD=DC=
AB,(2分)
∵DC是⊙O的直径,
∴DF⊥BC,(4分)
∴BF=FC,即F是BC的中点;(5分)
(2)∵D,态中F分别是AB,BC的中点,
∴DF∥AC,(6分)
∴∠A=∠BDF,(7分)
∵∠BDF=∠GEF(圆周角定理),(8分)
∴∠A=∠GEF.(9分)
证明二:
(1)连接DF,DE,
∵DC是⊙O直径,
∴∠DEC=∠DFC=90°.(1分)
∵∠ECF=90°,
∴四边形DECF是矩形.
∴EF=CD,DF=EC.(2分)碧闭凯
∵D是AB的中点,∠ACB=90°,
∴EF=CD=BD=
AB.(3分)
∴△DBF≌△EFC.(4分)
∴BF=FC,即F是BC的中点.(5分)
(2)∵△DBF≌△EFC,
∴∠BDF=∠FEC,∠B=∠EFC.(6分)
∵∠ACB=90°(也可证AB∥EF,得∠A=∠FEC),
∴∠A=∠FEC.(7分)
∵∠FEG=∠BDF(同弧所对的圆周角相等 ),(8分)
∴∠A=∠GEF.(9分)
(此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)
(1)连接DF,∵∠ACB=90°,D是AB的中点悔唤,
∴BD=DC=
1 |
2 |
∵DC是⊙O的直径,
∴DF⊥BC,(4分)
∴BF=FC,即F是BC的中点;(5分)
(2)∵D,态中F分别是AB,BC的中点,
∴DF∥AC,(6分)
∴∠A=∠BDF,(7分)
∵∠BDF=∠GEF(圆周角定理),(8分)
∴∠A=∠GEF.(9分)
证明二:
(1)连接DF,DE,
∵DC是⊙O直径,
∴∠DEC=∠DFC=90°.(1分)
∵∠ECF=90°,
∴四边形DECF是矩形.
∴EF=CD,DF=EC.(2分)碧闭凯
∵D是AB的中点,∠ACB=90°,
∴EF=CD=BD=
1 |
2 |
∴△DBF≌△EFC.(4分)
∴BF=FC,即F是BC的中点.(5分)
(2)∵△DBF≌△EFC,
∴∠BDF=∠FEC,∠B=∠EFC.(6分)
∵∠ACB=90°(也可证AB∥EF,得∠A=∠FEC),
∴∠A=∠FEC.(7分)
∵∠FEG=∠BDF(同弧所对的圆周角相等 ),(8分)
∴∠A=∠GEF.(9分)
(此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询