对于函数y=f(x)(x∈D),D为此函数的定义域,若同时满足下列两个条件: ①f(x)在D内单调
对于函数y=f(x)(x∈D),D为此函数的定义域,若同时满足下列两个条件:①f(x)在D内单调递增或单调递减;②存在区间〖a,b〗上的值域为〖a,b〗,那么我们把y=f...
对于函数y=f(x)(x∈D),D为此函数的定义域,若同时满足下列两个条件:
①f(x)在D内单调递增或单调递减;
②存在区间〖a,b〗上的值域为〖a,b〗,那么我们把y=f(x),x∈D叫闭函数。
(1)求闭函数y=-x的三次方符合条件②的区间〖a,b〗;
(2)若y=k+根号下x(k〈0)是闭函数,求实数k的取值范围。 展开
①f(x)在D内单调递增或单调递减;
②存在区间〖a,b〗上的值域为〖a,b〗,那么我们把y=f(x),x∈D叫闭函数。
(1)求闭函数y=-x的三次方符合条件②的区间〖a,b〗;
(2)若y=k+根号下x(k〈0)是闭函数,求实数k的取值范围。 展开
1个回答
推荐于2016-06-03
展开全部
【1】解:
易知,函数f(x)=-x ³的定义域为R,且在R上递减,
可设函数f(x)在区间[a,b],(a<b)上满足:
f(a)=b.且f(b)=a.即-a ³=b,且-b ³=a.
两式相乘可得:(ab)[(ab) ²-1]=0.易知,ab≠0.
∴(ab) ²=1.
两式再相加,可得:(a ³+b ³)+(a+b)=0.
∴(a+b)(a ²-ab+b ²+1)=0.易知,a ²-ab+b ²+1=[a-(b/2)] ²+(3b ²/4)+1>0.
∴a+b=0.结合(ab) ²=1,且a<b.可知,
a=-1,b=1.
闭函数f(x)=-x ³满足的闭区间为[-1,1].
【2】解:
易知,函数f(x)=k+√x,定义域为[0,+ ∞),且在定义域上递增。
可设闭函数f(x)满足的闭区间为[a,b].(0≤a<b)。
易知,此时必有a=k+√a,且b=k+√b.
即关于x的方程x-√x=k有两个非负实数根a,b.
把方程x-√x=k变形:[√x-(1/2)] ²=k+(1/4).
∴k+(1/4) >0. ∴k>-1/4.
结合k<0,可知:-1/4<k<0.
易知,函数f(x)=-x ³的定义域为R,且在R上递减,
可设函数f(x)在区间[a,b],(a<b)上满足:
f(a)=b.且f(b)=a.即-a ³=b,且-b ³=a.
两式相乘可得:(ab)[(ab) ²-1]=0.易知,ab≠0.
∴(ab) ²=1.
两式再相加,可得:(a ³+b ³)+(a+b)=0.
∴(a+b)(a ²-ab+b ²+1)=0.易知,a ²-ab+b ²+1=[a-(b/2)] ²+(3b ²/4)+1>0.
∴a+b=0.结合(ab) ²=1,且a<b.可知,
a=-1,b=1.
闭函数f(x)=-x ³满足的闭区间为[-1,1].
【2】解:
易知,函数f(x)=k+√x,定义域为[0,+ ∞),且在定义域上递增。
可设闭函数f(x)满足的闭区间为[a,b].(0≤a<b)。
易知,此时必有a=k+√a,且b=k+√b.
即关于x的方程x-√x=k有两个非负实数根a,b.
把方程x-√x=k变形:[√x-(1/2)] ²=k+(1/4).
∴k+(1/4) >0. ∴k>-1/4.
结合k<0,可知:-1/4<k<0.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询