如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点

如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(... 如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由. 展开
 我来答
TA0781
推荐于2016-07-01 · TA获得超过179个赞
知道答主
回答量:124
采纳率:50%
帮助的人:138万
展开全部
(1)PQ=PB,(1分)
过P点作MN∥BC分别交AB、DC于点M、N,
在正方形ABCD中,AC为对角线,
∴AM=PM,
又∵AB=MN,
∴MB=PN,
∵∠BPQ=90°,
∴∠BPM+∠NPQ=90°;
又∵∠MBP+∠BPM=90°,
∴∠MBP=∠NPQ,
在Rt△MBP≌Rt△NPQ中,
∠PMB=∠PNQ=90°
BM=PN
∠MBP=∠NPQ

∴Rt△MBP≌Rt△NPQ,(2分)
∴PB=PQ.

(2)∵S四边形PBCQ=S△PBC+S△PCQ
∵AP=x,
∴AM=
2
2
x,
∴CQ=CD-2NQ=1-
2
x,
又∵S△PBC=
1
2
BC?BM=
1
2
?1?(1-
2
2
x)=
1
2
-
2
4
x,
S△PCQ=
1
2
CQ?PN=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消