生活中的数学问题五年级

以习题的形式记录下来,最少五件。谢谢!... 以习题的形式记录下来,最少五件。
谢谢!
展开
 我来答
肖可_R
2015-03-01 · TA获得超过1万个赞
知道小有建树答主
回答量:483
采纳率:0%
帮助的人:415万
展开全部
抽屉原理和六人集会问题

“任意367个人中,必有生日相同的人。”

“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”

“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”

......

大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:
“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。
抽屉原理的一种更一般的表述为:
“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
1958年6/7月号的《美国数学月刊》上有这样一道题目:
“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”
这个问题可以用如下方法简单明了地证出:
在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。
六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。
各个超市里看一下商品价格 特别是原价、特价、买X送Y....进行对比(计算)得到答案,买最便宜的= =
常见的,X克的要多少多少钱,Y克要多少多少钱,Z克(大包装)送小产品优惠多少....等等
路边(电视上)都有很多促销活动,还有商家欺骗消费者的"假促销"(看起来价格低了,其实是高了)
帐号已注销
2020-02-04 · TA获得超过1.6万个赞
知道答主
回答量:11.7万
采纳率:4%
帮助的人:6291万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
wwmgh6917
2015-02-28 · TA获得超过152个赞
知道小有建树答主
回答量:225
采纳率:0%
帮助的人:43.6万
展开全部
给几个例子:1. 去超市买东西时,买了2只杯子,每只1元,共花了几元
2. 去菜市场买菜,买了1斤猪肉,每斤10元,花了多少元
3. 妈妈给我5元买酱油,花了3元,还剩几元
4. 我有3元零用钱,给了乞丐一元,还剩几元
5. 我有3元零用钱,上公交车花了2元,还剩几元
追问
这是一年级的题吧
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式