已知f(x)是定义在[-1,1]上的奇函数,且f(1)=2,任取a、b∈[-1,1],a+b≠0,都有f(a)+f(b)a+b>0成
已知f(x)是定义在[-1,1]上的奇函数,且f(1)=2,任取a、b∈[-1,1],a+b≠0,都有f(a)+f(b)a+b>0成立(1)判断f(x)的单调性,并说明理...
已知f(x)是定义在[-1,1]上的奇函数,且f(1)=2,任取a、b∈[-1,1],a+b≠0,都有f(a)+f(b)a+b>0成立(1)判断f(x)的单调性,并说明理由; (2)解不等式f(x)<f(1x+1)(3)若f(x)≤2m2-2am+3对所有的m∈[0,3]恒成立,求a的范围.
展开
1个回答
展开全部
(1)取a=x1,b=-x2∈[-1,1],且x1>x2,则x1-x2=a+b>0,
因为f(x)是定义在[-1,1]上的奇函数,则f(a)+f(b)=f(x1)+f(-x2)=f(x1)-f(x2),
所以f(x1)?f(x2)=
(x1?x2)=
(a+b)>0,所以f(x1)>f(x2)
所以函数f(x)是定义在[-1,1]上的增函数.
(2)因为f(x)是定义在[-1,1],且函数f(x)是定义在[-1,1]上的增函数,
所以f(x)<f(
)?
,解得:0≤x<
所以不等式f(x)<f(
)的解集为[0,
)
(3)因为函数f(x)是定义在[-1,1]上的增函数,
所以在[-1,1]上函数f(x)的最大值为f(1)=2,
若f(x)≤2m2-2am+3对所有的m∈[0,3]恒成立,即2≤2m2-2am+3对所有的m∈[0,3]恒成立,
也就是2m2-2am+1≥0恒成立,
分离变量得:a≤m+
恒成立,
因为m+
≥2
因为f(x)是定义在[-1,1]上的奇函数,则f(a)+f(b)=f(x1)+f(-x2)=f(x1)-f(x2),
所以f(x1)?f(x2)=
f(x1)?f(x2) |
x1?x2 |
f(a)+f(b) |
a+b |
所以函数f(x)是定义在[-1,1]上的增函数.
(2)因为f(x)是定义在[-1,1],且函数f(x)是定义在[-1,1]上的增函数,
所以f(x)<f(
1 |
x+1 |
|
| ||
2 |
所以不等式f(x)<f(
1 |
x+1 |
| ||
2 |
(3)因为函数f(x)是定义在[-1,1]上的增函数,
所以在[-1,1]上函数f(x)的最大值为f(1)=2,
若f(x)≤2m2-2am+3对所有的m∈[0,3]恒成立,即2≤2m2-2am+3对所有的m∈[0,3]恒成立,
也就是2m2-2am+1≥0恒成立,
分离变量得:a≤m+
1 |
2m |
因为m+
1 |
2m |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|