在△ABC中,sinBa<sinAb是A>B成立的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既
在△ABC中,sinBa<sinAb是A>B成立的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分又不必要条件...
在△ABC中,sinBa<sinAb是A>B成立的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分又不必要条件
展开
1个回答
展开全部
由题设条件
<
可得到bsinB<asinA,即sin2B<sin2A
又A,B是三角形的内角,故sinA>0,sinB>0
∴sinB<sinA
充分性:若A,B都是锐解,sinB<sinA可得出B<A
若A是钝角,由于A<π-B,故sinA>sin(π-B)=sinB,符合条件,此时有sinB<sinA可得出B<A
若B是钝角,由于B<π-A,故sinB>sin(π-A)=sinA,不符合条件,
综上在△ABC中,
<
是A>B成立的充分条件
必要性:若90°≥A>B,显然有sinB<sinA
若A>90°>B,则必有90°>π-A>B,故有sin(π-A)>sinB,即sinB<sinA
综上△ABC中,A>B是
<
成立的充分条件
综上,在△ABC中,
<
是A>B成立的充分必要条件,
故选C
sinB |
a |
sinA |
b |
又A,B是三角形的内角,故sinA>0,sinB>0
∴sinB<sinA
充分性:若A,B都是锐解,sinB<sinA可得出B<A
若A是钝角,由于A<π-B,故sinA>sin(π-B)=sinB,符合条件,此时有sinB<sinA可得出B<A
若B是钝角,由于B<π-A,故sinB>sin(π-A)=sinA,不符合条件,
综上在△ABC中,
sinB |
a |
sinA |
b |
必要性:若90°≥A>B,显然有sinB<sinA
若A>90°>B,则必有90°>π-A>B,故有sin(π-A)>sinB,即sinB<sinA
综上△ABC中,A>B是
sinB |
a |
sinA |
b |
综上,在△ABC中,
sinB |
a |
sinA |
b |
故选C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询