对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b-7

对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b-7)x+18的两个不动点分别是-3和2:(Ⅰ)求a... 对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b-7)x+18的两个不动点分别是-3和2:(Ⅰ)求a,b的值及f(x)的表达式;(Ⅱ)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域. 展开
 我来答
蔷烨鱼2868
推荐于2016-08-03 · TA获得超过105个赞
知道答主
回答量:155
采纳率:68%
帮助的人:60.3万
展开全部
(Ⅰ)依题意得f(-3)=-3,f(2)=2;
即9a+21-3b-a-ab=-3,4a+2b-14-a-ab=2,解得a=-3,b=5a,b=5
∴f(x)=-3x2-2x+18
(Ⅱ)∵函数f(x)的对称轴x=-
1
3
,且图象开口向下,
所以函数f(x)在区间[0,1]上单调递减,∴f(x)max=f(0)=18,f(x)min=f(1)=13
所以函数f(x)的值域为[13,18]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式