【附加题】已知二次函数y=x2+2(m+1)x-m+1.(1)随着m的变化,该二次函数图象的顶点P是否都在某条抛物

【附加题】已知二次函数y=x2+2(m+1)x-m+1.(1)随着m的变化,该二次函数图象的顶点P是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说... 【附加题】已知二次函数y=x2+2(m+1)x-m+1.(1)随着m的变化,该二次函数图象的顶点P是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.(2)如果直线y=x+1经过二次函数y=x2+2(m+1)x-m+1图象的顶点P,求此时m的值. 展开
 我来答
手机用户93684
2014-12-08 · TA获得超过108个赞
知道答主
回答量:108
采纳率:0%
帮助的人:109万
展开全部
(1)该二次函数图象的顶点P是在某条抛物线上求该抛物线的函数表达式如下:
利用配方,得y=(x+m+1)2-m2-3m,顶点坐标是P(-m-1,-m2-3m).
方法一:分别取m=0,-1,1,得到三个顶点坐标是P1(-1,0)、P2(0,2)、
P3(-2,-4),过这三个顶点的二次函数的表达式是y=-x2+x+2.
将顶点坐标P(-m-1,-m2-3m)代入y=-x2+x+2的左右两边,左边=-m2-3m,
右边=-(-m-1)2+(-m-1)+2=-m2-3m,
∴左边=右边.即无论m取何值,顶点P都在抛物线y=-x2+x+2上.
即所求抛物线的函数表达式是y=-x2+x+2.
方法二:令-m-1=x,则m=-x-1,将其代入-m2-3m,得-(-x-1)2-3(-x-1)=-x2+x+2.
即所求抛物线的函数表达式是y=-x2+x+2上.

(2)如果顶点P(-m-1,-m2-3m)在直线y=x+1上,
则-m2-3m=-m-1+1,
即m2=-2m,
∴m=0或m=-2,
∴当直线y=x+1经过二次函数y=x2+2(m+1)x-m+1图象的顶点P时,m的值是-2或0.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式