某次数学竞赛共有100名学生参赛,试题共有四道,结果恰有65名同学答对第一题,恰有55名同学答对第2题,恰有,

某次数学竞赛共有100名学生参赛,试题共有四道,结果恰有65名同学答对第一题,恰有55名同学答对第2题,恰有,45名同学答对第3题,恰有35名同学答对第4题,且任何一名学... 某次数学竞赛共有100名学生参赛,试题共有四道,结果恰有65名同学答对第一题,恰有55名同学答对第2题,恰有,45名同学答对第3题,恰有35名同学答对第4题,且任何一名学生至多多对2道题,则同时答对第一题和第二题的学生比同时答对第三题和第四题多( )人? 展开
 我来答
zhyzydw
2014-11-27 · TA获得超过1.2万个赞
知道大有可为答主
回答量:2384
采纳率:100%
帮助的人:1088万
展开全部

gz0922161 | 四级的回答正确。我这里换一个角度考虑一下:

    解:因65+55+45+35=200,又是100人在作题,所以每人都是答对2个题。
即200/2=100(人)即为作题人数。于是我们想到(65+55)-(45+35)=40,40/2=20(人)是不是同时答对第一题和第二题的学生比同时答对第三题和第四题多20人呢?答案是肯定的。因为问题里边的两部分中,其他的作答情况正好对等,取差正好消去。
    于是我们可以设想:同时答对一三的比同时答对二四的多

[(65+45)-(55+35)]/2=10(人);同时答对一四的与同时答对二三的一样多

(65+35)-(55+45)=0.
    事实果真如此么?我们不妨来分析一下。

    若是条件为①70答对,②60答对, ③40答对,④30答对,则我们很容易作出四个题目的作答者为35、30、20、15人,每人作对两题。

    但条件中每个均为奇数,看来作题的序号必有交叉,怎样来搭配才合适呢?这里要满足条件:总答题者为100人,每人答对2题,且符合题设。于是有以下两种搭配方式:

① ②为一组, ③④为一组是A;① ③为一组,② ④为一组是B。为了将200“压缩”为100,我们充分利用资源,将其中一个包含于另一个如图。

    于是有:A四个题的作答情况为:20人答对① ②,45人答对① ③,35人答对②④,没有人同时答对 ③④.即答对① ②比答对 ③④的多20人, 同时答对① ③比答对② ④的多10人, 同时答对① ④与同时答对② ③均为0人.

    B四个题的作答情况为:10人答对① ④ ,55人答对①②,35人答对③④.

    其中同时答对① ②的比答对 ③④的多20人,同时答对① ③比答对② ④的多10人, 同时答对① ④与同时答对② ③均为0人.

即前面的判断是正确的。

以上供参考。

百度网友d591714
2014-11-25 · 超过54用户采纳过TA的回答
知道答主
回答量:262
采纳率:0%
帮助的人:107万
展开全部
第一题有10人错,第二题有20人错,第三题有30人错,第四题有40人错,没有人全对,也就是说在在答对第四题的60人中,至少每个人错一题,全部分配下去的话,正好有30人分别错了第一或者第二题,剩下30个人第三题作对了,也就是说应该是30人?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
gz0922161
2014-11-25 · 超过35用户采纳过TA的回答
知道答主
回答量:128
采纳率:0%
帮助的人:58.9万
展开全部
65+55+45+35=200,总共答对200题,有100人,又每人最多对两题,因此可以得出每人都是对2题。所以最终答案65+55-45-35=20
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
混世魔王1205
2014-11-25 · TA获得超过2462个赞
知道小有建树答主
回答量:671
采纳率:100%
帮助的人:624万
展开全部
假设第二题答对的55名同学全部答对第一题,第四题答对的35名同学全部答对第三题,正好还剩10名同学答对第一题和第三题,符合题意,那么同时答对第一题和第二题的学生比同时答对第三题和第四题多20人
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式