设当x-》0时,(xf(x)+ln(1-2x))/x^2的极限 =4,则当x趋近于0时,(f(x)-2)/x的极限是多少。
展开全部
lim(x->0) (xf(x)+ln(1-2x))/x^2 (0/0)
=lim(x->0) [ xf'(x)+f(x) -2/(1-2x) ]/(2x) (0/0)
=> 0.f'(0)+f(0) -2/(1-2(0)) =0
=>f(0)- 2=0
=>f(0)=2
lim(x->0) [ xf'(x)+f(x) -2/(1-2x) ]/(2x) (0/0)
lim(x->0) [ xf''(x) + 2f'(x) - 2/(1-2x)^2 ]/2 =4
=>
0.f''(0) + 2f'(0) - 2/(1-2(0))^2 =8
2f'(0) - 2 =8
f'(0) = 5
lim(x->0)( f(x) -2)/x (0/0)
=lim(x->0)f'(x)
=f'(0)
=5
=lim(x->0) [ xf'(x)+f(x) -2/(1-2x) ]/(2x) (0/0)
=> 0.f'(0)+f(0) -2/(1-2(0)) =0
=>f(0)- 2=0
=>f(0)=2
lim(x->0) [ xf'(x)+f(x) -2/(1-2x) ]/(2x) (0/0)
lim(x->0) [ xf''(x) + 2f'(x) - 2/(1-2x)^2 ]/2 =4
=>
0.f''(0) + 2f'(0) - 2/(1-2(0))^2 =8
2f'(0) - 2 =8
f'(0) = 5
lim(x->0)( f(x) -2)/x (0/0)
=lim(x->0)f'(x)
=f'(0)
=5
追问
答案是6,而且f(x)不一定可导
追答
f(x)不一定可导,那就没法计算!
lim(x->0) (xf(x)+ln(1-2x))/x^2 (0/0)
=lim(x->0) [ xf'(x)+f(x) -2/(1-2x) ]/(2x) (0/0)
=> 0.f'(0)+f(0) -2/(1-2(0)) =0
=>f(0)- 2=0
=>f(0)=2
lim(x->0) [ xf'(x)+f(x) -2/(1-2x) ]/(2x) (0/0)
lim(x->0) [ xf''(x) + 2f'(x) - 4/(1-2x)^2 ]/2 =4
=>
0.f''(0) + 2f'(0) - 4/(1-2(0))^2 =8
2f'(0) - 4 =8
f'(0) = 6
lim(x->0)( f(x) -2)/x (0/0)
=lim(x->0)f'(x)
=f'(0)
=6
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询