
设x1、x2是方程x2+x-3=0的两根,那么x13-4x22+20=______
展开全部
∵x1、x2是方程x2+x-3=0的两根,
∴x12+x1-3=0,x22+x2-3=0,即x12=3-x1…①,x22=3-x2…②,x1+x2=-1…③,x1?x2=-3,
∴x13-4x22+20
=x1?x12-4x22+20
=x1?(3-x1)-4(3-x2)+20
=3x1-x12-12+4x2+20
=3x1-(3-x1)-12+4x2+20
=4(x1+x2)-3-12+20
=-4-3-12+20
=1.
故答案为:1.
∴x12+x1-3=0,x22+x2-3=0,即x12=3-x1…①,x22=3-x2…②,x1+x2=-1…③,x1?x2=-3,
∴x13-4x22+20
=x1?x12-4x22+20
=x1?(3-x1)-4(3-x2)+20
=3x1-x12-12+4x2+20
=3x1-(3-x1)-12+4x2+20
=4(x1+x2)-3-12+20
=-4-3-12+20
=1.
故答案为:1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询