已知数列{an}中,a1=1,an+1=an2an+1(n∈N*).(1)求证:数列{1an}为等差数列;(2)求数列{an}的通项
已知数列{an}中,a1=1,an+1=an2an+1(n∈N*).(1)求证:数列{1an}为等差数列;(2)求数列{an}的通项公式an;(3)设2bn=1an+1,...
已知数列{an}中,a1=1,an+1=an2an+1(n∈N*).(1)求证:数列{1an}为等差数列;(2)求数列{an}的通项公式an;(3)设2bn=1an+1,数列{bnbn+2}的前n项和Tn,求证:Tn<34.
展开
1个回答
展开全部
证明:(1)由an+1=
得:
-
=2,且
=1,
∴数列{
}是以1为首项,以2为公差的等差数列;
(2)由(1)得:
=1+2(n-1)=2n-1,
故an=
;
(3)由
=
+1得:
=2n-1+1=2n,
∴bn=
,
从而:bnbn+2=
=
(
-
),
则Tn=b1b3+b2b4+…+bnbn+2
=
[(1-
)+(
-
)+…+(
-
)]
=
(1+
-
-
)
=
-
(
+
)<
.
an |
2an+1 |
1 |
an+1 |
1 |
an |
1 |
a1 |
∴数列{
1 |
an |
(2)由(1)得:
1 |
an |
故an=
1 |
2n-1 |
(3)由
2 |
bn |
1 |
an |
2 |
bn |
∴bn=
1 |
n |
从而:bnbn+2=
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
则Tn=b1b3+b2b4+…+bnbn+2
=
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
n |
1 |
n+2 |
=
1 |
2 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
=
3 |
4 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
3 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询