如图:已知在△ABC中,∠ACB=90°,AC=BC=1,点D是AB上任意一点,AE⊥AB,且AE=BD,DE与AC相交于点F.(1

如图:已知在△ABC中,∠ACB=90°,AC=BC=1,点D是AB上任意一点,AE⊥AB,且AE=BD,DE与AC相交于点F.(1)试判断△CDE的形状,并说明理由.(... 如图:已知在△ABC中,∠ACB=90°,AC=BC=1,点D是AB上任意一点,AE⊥AB,且AE=BD,DE与AC相交于点F.(1)试判断△CDE的形状,并说明理由.(2)是否存在点D,使AE=AF?如果存在,求出此时AD的长,如果不存在,请说明理由. 展开
 我来答
小川PQri3
推荐于2018-03-14 · 超过64用户采纳过TA的回答
知道答主
回答量:121
采纳率:0%
帮助的人:159万
展开全部
(1)△CDE是等腰直角三角形.理由如下:
∵∠ACB=90°,AC=BC,
∴∠B=∠BAC=45°,
∵AE⊥AB,
∴∠CAE=90°-45°=45°,
∴∠B=∠CAE,
在△ACE和△BCD中,
AE=BD
∠B=∠CAE
AC=BC

∴△ACE≌△BCD(SAS),
∴CD=CE,∠ACE=∠BCD,
∵∠ACD+∠BCD=∠ACB=90°,
∴∠DCE=∠ACD+∠ACE=90°,
∴△CDE是等腰直角三角形;


(2)存在AD=1.理由如下:
∵AE=AF,∠CAE=45°,
∴∠AEF=∠AFE=
1
2
(180°-45°)=67.5°,
∴∠ADE=90°-67.5°=22.5°,
∵△CDE是等腰直角三角形,
∴∠CDE=45°,
∴∠ADC=22.5°+45°=67.5°,
在△ACD中,∠ACD=180°-45°-67.5°=67.5°,
∴∠ACD=∠ADC,
∴AD=AC=1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式