已知a∈R,函数f(x)=ax+lnx?1,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).(1)求函数f(x)在区
已知a∈R,函数f(x)=ax+lnx?1,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).(1)求函数f(x)在区间(0,e]上的最小值;(2)是否存在实数...
已知a∈R,函数f(x)=ax+lnx?1,g(x)=(lnx-1)ex+x(其中e为自然对数的底数).(1)求函数f(x)在区间(0,e]上的最小值;(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由.
展开
展开全部
(1)∵f(x)=
+lnx?1,
∴f′(x)=?
+
=
令f'(x)=0,得x=a.
①若a≤0,则f'(x)>0,f(x)在区间(0,e]上单调递增,此时函数f(x)无最小值.
②若0<a<e,当x∈(0,a)时,f'(x)<0,函数f(x)在区间(0,a)上单调递减,
当x∈(a,e]时,f'(x)>0,函数f(x)在区间(a,e]上单调递增,
所以当x=a时,函数f(x)取得最小值lna
③若a≥e,则f'(x)≤0,函数f(x)在区间(0,e]上单调递减,
所以当x=e时,函数f(x)取得最小值
.
.综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值;
当0<a<e时,函数f(x)在区间(0,e]上的最小值为lna;
当a≥e时,函数f(x)在区间(0,e]上的最小值为
.
(2)∵g(x)=(lnx-1)ex+x,x∈(0,e],
∴g'(x)=(lnx-1)′ex+(lnx-1)(ex)′+1=
+(lnx?1)ex+1=(
+lnx?1)ex+1.
由(1)可知,当a=1时,f(x)=
+lnx?1.
此时f(x)在区间(0,e]上的最小值为ln1=0,即
+lnx?1≥0.(10分)
当x0∈(0,e],ex0>0,
+lnx0?1≥0,
∴g′(x0)=(
+lnx0?1)ex0+1≥1>0.
曲线y=g(x)在点x=x0处的切线与y轴垂直等价于方程g'(x0)=0有实数解.(13分)
而g'(x0)>0,即方程g'(x0)=0无实数解.、故不存在x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直.
a |
x |
∴f′(x)=?
a |
x2 |
1 |
x |
x?a |
x2 |
令f'(x)=0,得x=a.
①若a≤0,则f'(x)>0,f(x)在区间(0,e]上单调递增,此时函数f(x)无最小值.
②若0<a<e,当x∈(0,a)时,f'(x)<0,函数f(x)在区间(0,a)上单调递减,
当x∈(a,e]时,f'(x)>0,函数f(x)在区间(a,e]上单调递增,
所以当x=a时,函数f(x)取得最小值lna
③若a≥e,则f'(x)≤0,函数f(x)在区间(0,e]上单调递减,
所以当x=e时,函数f(x)取得最小值
a |
e |
.综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值;
当0<a<e时,函数f(x)在区间(0,e]上的最小值为lna;
当a≥e时,函数f(x)在区间(0,e]上的最小值为
a |
e |
(2)∵g(x)=(lnx-1)ex+x,x∈(0,e],
∴g'(x)=(lnx-1)′ex+(lnx-1)(ex)′+1=
ex |
x |
1 |
x |
由(1)可知,当a=1时,f(x)=
1 |
x |
此时f(x)在区间(0,e]上的最小值为ln1=0,即
1 |
x |
当x0∈(0,e],ex0>0,
1 |
x0 |
∴g′(x0)=(
1 |
x0 |
曲线y=g(x)在点x=x0处的切线与y轴垂直等价于方程g'(x0)=0有实数解.(13分)
而g'(x0)>0,即方程g'(x0)=0无实数解.、故不存在x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询