如图所示,在倾角为30°.的光滑斜面上端系有一劲度系数为20N/m的轻质弹簧,弹簧下端连一个质量为2kg的小
如图所示,在倾角为30°.的光滑斜面上端系有一劲度系数为20N/m的轻质弹簧,弹簧下端连一个质量为2kg的小球,球被一垂直于斜面的挡板A挡住,此时弹簧没有形变.若挡板A以...
如图所示,在倾角为30°.的光滑斜面上端系有一劲度系数为20N/m的轻质弹簧,弹簧下端连一个质量为2kg的小球,球被一垂直于斜面的挡板A挡住,此时弹簧没有形变.若挡板A以4m/s2的加速度沿斜面向下匀加速运动,则( )A.小球向下运动0.1m时速度最大B.小球向下运动0.1m时与挡板分离C.在小球开始运动到速度达到最大的过程中,小球一直做匀加速直线运动D.在小球从开始运动到与挡板分离的过程中,小球重力势能的减少量大于其动能与弹簧弹性势能增加量之和
展开
展开全部
A、球和挡板分离前小球做匀加速运动;球和挡板分离后做加速度减小的加速运动,当加速度为零时,速度最大,此时物体所受合力为零.即:
kxm=mgsin30°,
解得:xm=
=
=0.5m,
由于开始时弹簧处于原长,所以速度最大时小球向下运动的路程为0.5m.故A错误.
B、设球与挡板分离时位移为x,经历的时间为t,
从开始运动到分离的过程中,m受竖直向下的重力,垂直斜面向上的支持力FN,沿斜面向上的挡板支持力F1和弹簧弹力F.
根据牛顿第二定律有 mgsin30°-kx-F1=ma,
保持a不变,随着x的增大,F1减小,当m与挡板分离时,F1减小到零,则有:
mgsin30°-kx=ma,
解得:x=
=
=0.1m,
即小球向下运动0.1m时与挡板分离,故B正确.
C、球和挡板分离前小球做匀加速运动;球和挡板分离后做加速度减小的加速运动,当加速度为零时,速度最大,故C错误;
D、从开始运动到分离的过程中,挡板对小球有沿斜面向上的支持力,小球重力势能的减少量大于其动能与弹簧弹性势能增加量之和,故D正确
故选:BD
kxm=mgsin30°,
解得:xm=
mgsin30° |
k |
2×10×0.5 |
20 |
由于开始时弹簧处于原长,所以速度最大时小球向下运动的路程为0.5m.故A错误.
B、设球与挡板分离时位移为x,经历的时间为t,
从开始运动到分离的过程中,m受竖直向下的重力,垂直斜面向上的支持力FN,沿斜面向上的挡板支持力F1和弹簧弹力F.
根据牛顿第二定律有 mgsin30°-kx-F1=ma,
保持a不变,随着x的增大,F1减小,当m与挡板分离时,F1减小到零,则有:
mgsin30°-kx=ma,
解得:x=
m(gsin30°?a) |
k |
2×(5?4) |
20 |
即小球向下运动0.1m时与挡板分离,故B正确.
C、球和挡板分离前小球做匀加速运动;球和挡板分离后做加速度减小的加速运动,当加速度为零时,速度最大,故C错误;
D、从开始运动到分离的过程中,挡板对小球有沿斜面向上的支持力,小球重力势能的减少量大于其动能与弹簧弹性势能增加量之和,故D正确
故选:BD
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询