已知双曲线中,离心率=2,F1F2为左右焦点,P为双曲线上的一点,∠F1PF2=60度,S角形PF

已知双曲线中,离心率=2,F1F2为左右焦点,P为双曲线上的一点,∠F1PF2=60度,S角形PF1F2=12√3,求双曲线方程。求学霸给出详细解题步骤... 已知双曲线中,离心率=2,F1F2为左右焦点,P为双曲线上的一点,∠F1PF2=60度,S角形PF1F2=12√3,求双曲线方程。求学霸给出详细解题步骤 展开
 我来答
境界_淡定
推荐于2021-02-05 · TA获得超过904个赞
知道小有建树答主
回答量:790
采纳率:0%
帮助的人:613万
展开全部
设双曲线方程为:x^2/a^2-y^2/b^2=1,
F1、F2分别是双曲线的左右焦点,P是双曲线上任意一点,PF1和PF2夹角为60,
在△PF1F2中,根据余弦定理,
F1F2^2=PF1^2+PF2^2-2|PF1|*|PF2|cos60,
||PF2|-|PF1||=2a,|F1F2|=2c,
4c^2=(PF1-PF2)^2+2|PF1|*|PF2|-2|PF1|*|PF2|cos60,
4c^2=4a^2+2|PF1|*|PF2|(1-cos60)
|PF1|*|PF2|(1-cos60)=2(c^2-a^2)=2b^2,
|PF1|*|PF2|=2b^2/(1-cos60),
S△PF1F2=(1/2)|PF1||PF2|sin60
=b^2sin60/(1-cos60)
=√3b^2=12√3.
b^2=12.∵c/a=2,∴c=2a,b^2=c^2-a^2=3a^2=12,∴a^2=4
∴方程是x^2/4+y^2/12=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式