设f(x)=lnx+ -1,证明:(1)当x>1时,f(x)< (x-1);(2)当1<x<3时,f(x)< .
设f(x)=lnx+-1,证明:(1)当x>1时,f(x)<(x-1);(2)当1<x<3时,f(x)<....
设f(x)=lnx+ -1,证明:(1)当x>1时,f(x)< (x-1);(2)当1<x<3时,f(x)< .
展开
屝閒沛
推荐于2016-02-10
关注
证明:(1)(证法一)记g(x)=lnx+ -1- (x-1).则当x>1时, g′(x)= + - <0,g(x)在(1,+∞)上单调递减. 又g(1)=0,有g(x)<0,即f(x)< (x-1). (证法二) 由均值不等式,当x>1时,2 <x+1,故 < + .① 令k(x)=lnx-x+1,则k(1)=0,k′(x)= -1<0, 故k(x)<0,即lnx<x-1.② 由①②得,当x>1时,f(x)< (x-1). (2)(证法一)记h(x)=f(x)- ,由(1)得 h′(x)= + - = - < - = . 令g(x)=(x+5) 3 -216x,则当1<x<3时,g′(x)=3(x+5) 2 -216<0. 因此g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,所以h′(x)<0. 因此h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0.于是当1<x<3时,f(x)< . (证法二)记h(x)=(x+5)f(x)-9(x-1), 则当1<x<3时,由(1)得h′(x)=f(x)+(x+5)f′(x)-9< (x-1)+(x+5) -9 = [3x(x-1)+(x+5)(2+ )-18x]< = (7x 2 -32x+25)<0. 因此h(x)在(1,3)内单调递减,又 ,所以 ,即 . |
收起
?>
为你推荐: