设数列{an}满足an+1=an2-nan+1,n=1,2,3,…,当a1=2时,求a2,a3,a4,并由此猜想出an的一个通项公式

设数列{an}满足an+1=an2-nan+1,n=1,2,3,…,当a1=2时,求a2,a3,a4,并由此猜想出an的一个通项公式并用数学归纳法证明.... 设数列{an}满足an+1=an2-nan+1,n=1,2,3,…,当a1=2时,求a2,a3,a4,并由此猜想出an的一个通项公式并用数学归纳法证明. 展开
 我来答
麻花疼不疼3697
2014-09-12 · TA获得超过155个赞
知道答主
回答量:197
采纳率:50%
帮助的人:116万
展开全部
根据题目给出的关系式可得:
n=1,a2=a12-a1+1=22-2+1=3,
n=2,a3=a22-2a2+1=32-2×3+1=4,
n=3,a4=a32-3a3+1=42-3×4+1=5,
由此可以猜测an=n+1.
下面用数学归纳法证明
当n=1时,a2=2=1+1,成立.
假设当n=k(k≥2)时成立.即ak=k+1,
那么当n=k+1时,ak+1=ak2-kan+1=(k+1)2-k(k+1)+1=k+2=(k+1)+1
即当n=k+1时也成立.
所以an=n+1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式