求解一道大一高数题!(2015.5.27C)有过程优先采纳!
2015-05-27
展开全部
由z=√(x^2+y^2)和z^2=2x可得曲面在xoy平面的投影为Dxy:(x-1)^2+y^2≤1
dz/dx=x/√(x^2+y^2),dz/dy=y/√(x^2+y^2)
√((dz/dx)^2+(dz/dy)^2+1)=√2=>dS=√2dσxy
∫∫(∑)dS=∫∫(Dxy)√2dσxy=√2*π*1^2=√2π
dz/dx=x/√(x^2+y^2),dz/dy=y/√(x^2+y^2)
√((dz/dx)^2+(dz/dy)^2+1)=√2=>dS=√2dσxy
∫∫(∑)dS=∫∫(Dxy)√2dσxy=√2*π*1^2=√2π
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询