椭圆的离心率和双曲线的离心率一样吗

 我来答
小太阳one
高粉答主

推荐于2019-10-06 · 醉心答题,欢迎关注
知道小有建树答主
回答量:115
采纳率:0%
帮助的人:3万
展开全部

不一样。椭圆的离心率0<e<1,双曲线的离心率e>1。离心率用来描述轨道的形状,用焦点间距离除以长轴的长度可以算出离心率。离心率定义为椭圆两焦点间的距离和长轴长度的比值,用e表示,即e=c/a (c为半焦距;a为长半轴)。

扩展资料:

1、常见曲线的离心率

(1)双曲线的e>1;

(2)椭圆的0<e<1;

(3)抛物线的e=1;

(4)圆的e=0。

2、离心率与椭圆和双曲线图形的关系

(1)在椭圆中,e=c/a,而a^2-b^2=c^2,e越接近于1,则c越接近于a,从而b=√(a^2-c^2)越小,因此,椭圆越扁;反之,e越接近于0,c越接近于0,从而b越接近于a,这时椭圆就接近于圆。
所以椭圆离心率越大,它越扁。

(2)在双曲线中,e=c/a,而a^2+b^2=c^2,所以b/a=√(c^2-a^2)/a=√(c^2/a^2-1)=√(e^2-1),所以e越大,b/a也越大,即渐近线y=±b/a*x的斜率的绝对值越大,这时双曲线的形状就从扁狭逐渐变得开阔,由此可知,双曲线的离心率越大,它的开口就越阔。

参考资料:百度百科-偏心率(离心率)

流蓉白0V
推荐于2019-09-12 · TA获得超过25.5万个赞
知道小有建树答主
回答量:116
采纳率:100%
帮助的人:3.9万
展开全部

不一样。椭圆的离心率0<e<1,双曲线的离心率e>1。离心率用来描述轨道的形状,用焦点间距离除以长轴的长度可以算出离心率。离心率定义为椭圆两焦点间的距离和长轴长度的比值,用e表示,即e=c/a (c为半焦距;a为长半轴)。

扩展资料:

一、椭圆的画法:

椭圆的焦距│FF'│(Z)定义,为已知椭圆所构成的长轴X(ab)与短轴Y(cd)则以长轴一端A为圆心短轴Y为半径画弧,从长轴另一段点B引出与弧相切的线段则为该椭圆焦距,

求证公式为2√{(Z/2)^2+(Y/2)^2}+Z=X+Z(平面内与两定点F、F'的距离的和等于常数2a(2a>|FF'|)的动点P的轨迹叫做椭圆),可演变为z=√x^2-y^2(x>y>0)。

Z两端点F、F'为定点。取有韧性切伸缩系数越小越好的线,环绕线段AF'或者FB线段任意一组为长度,以该长度为固定三角形周长,以F、F' 为定点、取构成该三角形上的第三点为动点画弧则构成该椭圆。

二、双曲线渐近线的几何性质

(1)范围:|x|≥a,y∈R.

(2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称.

(3)顶点:两个顶点A1(-a,0),A2(a,0),两顶点间的线段为实轴,长为2a,虚轴长为2b,且c2=a2+b2.与椭圆不同.

(4)渐近线:双曲线特有的性质,方程y=±(b/a)x(当焦点在x轴上),y=±(a/b)x (焦点在y轴上)或令双曲线

参考资料:百度百科-椭圆离心率

参考资料:百度百科-双曲线渐近线

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小小芝麻大大梦
高粉答主

推荐于2019-11-12 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:941万
展开全部

不一样。0<e<1,椭圆。e>1, 双曲线

在椭圆的标准方程X^2/a^2+Y^2/b^2=1中,如果a>b>0焦点在X轴上;如果b>a>0焦点在Y轴上。这时,a代表长轴b代表短轴 c代表两焦点距离的一半,存在a^2=c^2+b^2。偏心率e=c/a (0<e<1)中,当e越大,椭圆越扁平。

在双曲线中,e=c/a,而a^2+b^2=c^2,所以b/a=√(c^2-a^2)/a=√(c^2/a^2-1)=√(e^2-1),所以e越大,b/a也越大,即渐近线y=±b/a*x的斜率的绝对值越大,这时双曲线的形状就从扁狭逐渐变得开阔,由此可知,双曲线的离心率越大,它的开口就越阔。

扩展资料:

圆的离心率=0,椭圆的离心率:e=c/a(0,1)(c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) ),抛物线的离心率:e=1,双曲线的离心率:e=c/a(1,+∞) (c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) )

圆锥曲线统一定义中,圆锥曲线(二次非圆曲线)的统一极坐标方程为,ρ=ep/(1-e×cosθ), 其中e表示离心率,p为焦点到准线的距离。椭圆上任意一点到两焦点的距离等于a±ex。

参考资料:百度百科-椭圆离心率

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
推荐于2019-11-17 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:168万
展开全部

不一样。0<e<1,椭圆。e>1, 双曲线。

在椭圆中,e=c/a,而a^2-b^2=c^2,e越接近于1,则c越接近于a,从而b=√(a^2-c^2)越小,因此,椭圆越扁;反之,e越接近于0,c越接近于0,从而b越接近于a,这时椭圆就接近于圆。所以椭圆离心率越大,它越扁。

在双曲线中,e=c/a,而a^2+b^2=c^2,所以b/a=√(c^2-a^2)/a=√(c^2/a^2-1)=√(e^2-1),所以e越大,b/a也越大,即渐近线y=±b/a*x的斜率的绝对值越大,这时双曲线的形状就从扁狭逐渐变得开阔,由此可知,双曲线的离心率越大,它的开口就越阔。

扩展资料:

离心率是动点到左(右)焦点的距离和动点到左(右)准线的距离之比。椭圆扁平程度的一种量度,离心率定义为椭圆两焦点间的距离和长轴长度的比值,用e表示,即e=c/a (c,半焦距;a,长半轴)

椭圆的离心率可以形象地理解为,在椭圆的长轴不变的前提下,两个焦点离开中心的程度。离心率=(ra-rp)/(ra+rp),ra指远点距离,rp指近点距离。

圆的离心率=0,椭圆的离心率:e=c/a(0,1)(c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) ),抛物线的离心率:e=1,双曲线的离心率:e=c/a(1,+∞) (c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) )

在圆锥曲线统一定义中,圆锥曲线(二次非圆曲线)的统一极坐标方程为,ρ=ep/(1-e×cosθ), 其中e表示离心率,p为焦点到准线的距离。椭圆上任意一点到两焦点的距离等于a±ex。

参考资料:百度百科——椭圆离心率

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
djdhdhsjjs
2018-12-30
知道答主
回答量:34
采纳率:0%
帮助的人:2.4万
展开全部
不一样。0<e<1,椭圆。e>1, 双曲线。

在椭圆的标准方程X^2/a^2+Y^2/b^2=1中,如果a>b>0焦点在X轴上;如果b>a>0焦点在Y轴上。这时,a代表长轴b代表短轴 c代表两焦点距离的一半,存在a^2=c^2+b^2。偏心率e=c/a (0<e<1)中,当e越大,椭圆越扁平。

在双曲线中,e=c/a,而a^2+b^2=c^2,所以b/a=√(c^2-a^2)/a=√(c^2/a^2-1)=√(e^2-1),所以e越大,b/a也越大,即渐近线y=±b/a*x的斜率的绝对值越大,这时双曲线的形状就从扁狭逐渐变得开阔,由此可知,双曲线的离心率越大,它的开口就越阔。



扩展资料:

圆的离心率=0,椭圆的离心率:e=c/a(0,1)(c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) ),抛物线的离心率:e=1,双曲线的离心率:e=c/a(1,+∞) (c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) )

在圆锥曲线统一定义中,圆锥曲线(二次非圆曲线)的统一极坐标方程为,ρ=ep/(1-e×cosθ), 其中e表示离心率,p为焦点到准线的距离。椭圆上任意一点到两焦点的距离等于a±ex。

参考资料:百度百科-椭圆离心率
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式