微积分,这道题怎么做
2个回答
展开全部
转换为函数极限,令t=1/n,则
I=lim[t->0]((a^t+b^t+c^t)/3)^(1/t)
lnI
=lim[t->0]ln((a^t+b^t+c^t)/3)/t
=lim[t->0](a^tlna+b^tlnb+c^tlnc)/(a^t+b^t+c^t)(洛必达法则)
=(lna+lnb+lnc)/3
=ln(abc)^(1/3)
所以I=(abc)^(1/3)
I=lim[t->0]((a^t+b^t+c^t)/3)^(1/t)
lnI
=lim[t->0]ln((a^t+b^t+c^t)/3)/t
=lim[t->0](a^tlna+b^tlnb+c^tlnc)/(a^t+b^t+c^t)(洛必达法则)
=(lna+lnb+lnc)/3
=ln(abc)^(1/3)
所以I=(abc)^(1/3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
I = lim(n->∞) {[ a^(1/n) +b^(1/n) + c^(1/n) ]/3}^n
consider
I = lim(x->∞) {[ a^(1/x) +b^(1/x) + c^(1/x) ]/3}^x
lnL =lim(x->∞) ln{[ a^(1/x) +b^(1/x) + c^(1/x) ]/3} /x (∞/∞)
=lim(x->∞) -3[ lna .a^(1/x)+lnb .b^(1/x)+lnc. c^(1/x) ]
/ {x^2.[ a^(1/x) +b^(1/x) + c^(1/x) ] }
=0
L = e^0 =1
consider
I = lim(x->∞) {[ a^(1/x) +b^(1/x) + c^(1/x) ]/3}^x
lnL =lim(x->∞) ln{[ a^(1/x) +b^(1/x) + c^(1/x) ]/3} /x (∞/∞)
=lim(x->∞) -3[ lna .a^(1/x)+lnb .b^(1/x)+lnc. c^(1/x) ]
/ {x^2.[ a^(1/x) +b^(1/x) + c^(1/x) ] }
=0
L = e^0 =1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询