摆线的参数方程如何化为普通方程? x=r(t-sint) y=r(1-cost)

 我来答
帐号已注销
2018-12-22 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.4万
展开全部

x=r(t-sint).............(1)

y=r(1-cost)...........(2)

由(2)得cost=1-(y/r),∴t=arccos[1-(y/r)]...........(3);

sint=sin[arccos(1-y/r)]=√[1-(1-y/r)²]=√(2y/r-y²/r²)=(1/r)√(2ry-y²)........(4)

将(3)(4)代入(1)时即得:

x=rarccos[1-(y/r)]-√(2ry-y²).

这就化成了普通方程。

曲线的极坐标参数方程ρ=f(t),θ=g(t)。

圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标。

椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数 。

双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数。

抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数。

直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数。

或者x=x'+ut,  y=y'+vt (t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)。

圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数。

扩展资料:

如果函数f(x)及F(x)满足:

⑴在闭区间[a,b]上连续;

⑵在开区间(a,b)内可导;

⑶对任一x∈(a,b),F'(x)≠0。

那么在(a,b)内至少有一点ζ,使等式

[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。

柯西简洁而严格地证明了微积分学基本定理即牛顿-莱布尼茨公式。他利用定积分严格证明了带余项的泰勒公式,还用微分与积分中值定理表示曲边梯形的面积,推导了平面曲线之间图形的面积、曲面面积和立体体积的公式。

参数曲线亦可以是多于一个参数的函数。例如参数表面是两个参数(s,t)或(u,v)的函数。

参考资料:百度百科——参数方程

上海荆谱若科技有限公司_
2023-02-28 广告
上海荆谱若科技有限公司专业生产在线气体质谱仪、电化学质谱仪、气体分析系统、薄膜沉积系统等,并代理国际知名品牌Prevac的薄膜沉积系统、表面分析系统、分析仪器零部件、真空零部件等,公司的销售、技术和售后服务人员有多年的相关技术经验,可以根据... 点击进入详情页
本回答由上海荆谱若科技有限公司_提供
wjl371116
2016-01-19 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67431

向TA提问 私信TA
展开全部
x=r(t-sint).............(1)
y=r(1-cost)...........(2)
由(2)得cost=1-(y/r),∴t=arccos[1-(y/r)]...........(3);
sint=sin[arccos(1-y/r)]=√[1-(1-y/r)²]=√(2y/r-y²/r²)=(1/r)√(2ry-y²)........(4)
将(3)(4)代入(1)时即得:
x=rarccos[1-(y/r)]-√(2ry-y²).
这就化成了普通方程。
追问
必须要用反三角函数来表示吗?感觉好别扭。。。
追答
其中t是转轮的转角,是个参变量;r是转轮的半径,是个已知量。
为了消去参变量t,只能用反三角函数; 如果保留这个参变量,就
可不用反三角函数,可参看下面评论栏里我写的答复。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
白小豨
2019-12-21 · TA获得超过1719个赞
知道答主
回答量:4597
采纳率:6%
帮助的人:255万
展开全部
这个应该是有公式的,根据那两个公式换算带入一下就可以了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
冰冷的风ii
2019-05-21
知道答主
回答量:1
采纳率:0%
帮助的人:741
展开全部
( ✘_✘ )↯
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式