设函数z=sin(x^2-2y) 求二阶偏导数
展开全部
解:
dz/dx=2xcos(x²-2y)
d²z/d²x
=[2xcos(x²-2y)]'
=2{x'cos(x²-2y)+x[cos(x²-2y)]'}
=2[cos(x²-2y)-xsin(x²-2y)2x]
=2[cos(x²-2y)-2x²sin(x²-2y)]
dz/dy=-2cos(x²-2y)
d²z/d²y
=[-2cos(x²-2y)]'
=-2[cos(x²-2y)]'
=-2[-sin(x²-2y)](-2)
=-4sin(x²-2y)
dz/dx=2xcos(x²-2y)
d²z/d²x
=[2xcos(x²-2y)]'
=2{x'cos(x²-2y)+x[cos(x²-2y)]'}
=2[cos(x²-2y)-xsin(x²-2y)2x]
=2[cos(x²-2y)-2x²sin(x²-2y)]
dz/dy=-2cos(x²-2y)
d²z/d²y
=[-2cos(x²-2y)]'
=-2[cos(x²-2y)]'
=-2[-sin(x²-2y)](-2)
=-4sin(x²-2y)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询