分子越小,分数就越小,分子越大,分数就越大。对吗 15
错误。
分析过程如下:
分子越小,分数就越小,分子越大,分数就越大。是有前提的,分母相同的正分数分子越小,分数就越小,分子越大,分数就越大。
在没有前提条件下,笼统的说分子越小,分数就越小,分子越大,分数就越大。是一个错误的命题。
扩展资料:
分数比较大小方法如下:
1、分子相同的情况下分母越小分数越大。
例如:1/2>1/3
2、分母相同的的情况下,分子越大的分数就越大。
例如:2/3>1/3
3、分子分母都不相同的,首先通分,然后再比较大小。
例如:1/3(=4/12)>1/4(=3/12)
对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大。
对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大。
不对,缺少条件,应该说在分母相同的情况下,分子越小,分数就越小,分子越大,分数就越大。比如,5分之2大于5分之1。
分数大小比较指的是对于分母或分子相同的分数,可根据同分母或同分子分数比较大小的方法进行比较;对于分母和分子都不相同的分数,通常是采用先通分再比较大小的方法。
扩展资料:
常见的分数比较大小法:
1、化同分子法
先把分子不同的两个分数化成分子相同的两个分数,然后再根据“分子相同的两个分数,分母小的分数比较大”进行比较。
2、化成小数法
先把两个分数化成小数,再进行比较。
3、搭桥法
在要比较的两个分数之间,找一个中间分数,根据这两个分数和中间分数的大小关系,比较这两个分数的大小。
4、差等规律法
根据“分子与分母的差相等的两个真分数,分子加分母得到的和较大的分数比较大;分子与分母的差相等的两个假分数,分子加分母得到的和较大的分数比较小”比较两个分数的大小。
5、交叉相乘法
把第一个分数的分子与第二个分数的分母相乘的积当作第一个分数的相对值;把第二个分数的分子与第一个分数的分母相乘的积当作第二个分数的相对值,相对值比较大的分数比较大。
6、比较倒数法
通过比较两个分数倒数的大小,比较两个分数的大小。倒数较小的分数,原分数较大;倒数较大的分数,原分数较小。
7、相除法
用第一个分数除以第二个分数,若商小于1,则第一个分数小;若商大于1,则第一个分数大;若商等于1,则两个分数相等。
参考资料来源:百度百科-分数大小比较
推荐于2017-11-22
错,应该是分母不变,分子越小,分数值也越小. 1/2大于4/9
求好评
如果在没有 分母相同的前提下 呢