函数fx在x=xo处有定义,是x-xo时fx有极限的什么条件

 我来答
轩轩智慧先锋
高能答主

2019-10-31 · 希望是生命中的那束光,照亮我们的未来。
轩轩智慧先锋
采纳数:2714 获赞数:533633

向TA提问 私信TA
展开全部

结果为:既不充分又不必要条件。

解:当函数f(x)在xo处有定义;

不能说明:当x趋近于xo时函数f(x)有极限;

因为极限存在,要求左右极限都存在,并且相等如分段函数f(x)=x-1,x0;

在0处有定义,但左右极限分别是-1和1;

当x趋近于xo时函数f(x)有极限;

只能说明函数左右极限存在并且相等;

函数在该点可能没有定义如:f(x)=tanx/x 在0处极限为1;

但是在0处没定义;

所以是既不充分又不必要条件。


扩展资料


公式:

求数列极限的方法:

设一元实函数f(x)在点x0的某去心邻域内有定义,如果函数f(x)有下列情形之一:

1、函数f(x)在点x0的左右极限都存在但不相等,即f(x0+)≠f(x0-)。

2、函数f(x)在点x0的左右极限中至少有一个不存在。

3、函数f(x)在点x0的左右极限都存在且相等,但不等于f(x0)或者f(x)在点x0无定义。则函数f(x)在点x0为不连续,而点x0称为函数f(x)的间断点。

轮看殊O
高粉答主

2019-10-31 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:763万
展开全部

首先当函数f(x)在xo处有定义,不能说明:当x趋近于xo时函数f(x)有极限,因为极限存在 要求左右极限都存在,并且相等如分段函数f(x)=x-1,x0;在0处有定义,但左右极限分别是-1和1。

反过来 当x趋近于xo时函数f(x)有极限,只能说明函数左右极限存在并且相等,函数在该点可能没有定义如:f(x)=tanx/x 在0处极限为1,但是在0处没定义。

扩展资料

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。

1、夹逼定理:

(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立

(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A

不但能证明极限存在,还可以求极限,主要用放缩法

2、单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数的极限值。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
CXH_1012
推荐于2017-11-22 · TA获得超过2065个赞
知道小有建树答主
回答量:1416
采纳率:100%
帮助的人:624万
展开全部
屁条件都不是,既非充分,也不必要。
事实上,函数fx在x→x。时有极限,仅要求fx在x。的一个足够近的近旁有定义并趋向一个固定值,与fx在x。处是否有定义无关。
例如y=x/x,在x=0处无定义,但却有极限值1
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式