数学归纳法的基本步骤

 我来答
白雪忘冬
高粉答主

2020-06-24 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376612

向TA提问 私信TA
展开全部

1、(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;

2、(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立。

这种方法的原理在于:首先证明在某个起点值时命题成立,然后证明从一个值到下一个值的过程有效。当这两点都已经证明,那么任意值都可以通过反复使用这个方法推导出来。

扩展资料

没有运用归纳假设的证明不是数学归纳法.在n=k到n=k+1的证明过程中寻找由n=k到n=k+1的变化规律是难点,突破的关键是分析清楚p(k)与p(k+1)的差异与联系,

利用拆、添、并、放、缩等手段,从p(k+1)中分离出p(k).证明不等式的方法多种多样,故在用数学归纳法证明不等式的过程中,比较法、放缩法、分析法等要灵活运用。

参考资料来源:百度百科-数学归纳法

道神伤
推荐于2017-09-04 · TA获得超过2.6万个赞
知道大有可为答主
回答量:2486
采纳率:86%
帮助的人:455万
展开全部
  
  一般地,证明一个与自然数n有关的命题P(n),有如下步骤:
  (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况;
  (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。
  综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。
  第二数学归纳法
  数学归纳法的基本步骤:

  对于某个与自然数有关的命题P(n),
  (1)验证n=n0时P(n)成立;
  (2)假设n0≤n<k时P(n)成立,并在此基础上,推出P(k+1)成立。
  综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。
  倒推归纳法(反向归纳法)
  (1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以是一个无穷数列中的数,如对于算术几何不等式的证明,可以是2^k,k≥1);
  (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立,
  综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立;
  螺旋式归纳法
  对两个与自然数有关的命题P(n),Q(n),
  (1)验证n=n0时P(n)成立;
  (2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1)成立;综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。

  数学归纳法:数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
d62666
推荐于2017-09-12 · TA获得超过7.2万个赞
知道大有可为答主
回答量:2702
采纳率:100%
帮助的人:3629万
展开全部
1)当n=1时,显然成立。
2)假设当n=k时(把式中n换成k,写出来)成立,
则当n=k+1时,(这步比较困难,化简步骤往往繁琐,考试时可以直接写结果)该式也成立.
由(1)(2)得,原命题对任意正整数均成立
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一路涛声
2010-04-28 · TA获得超过122个赞
知道答主
回答量:29
采纳率:0%
帮助的人:23.6万
展开全部
①n=1时,结论成立
②n=k时,假设结论也成立
利用n=k时成立的结论,验证n=k+1时结论也成立
得证,结论成立。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
三农晓雅
2019-10-08 · TA获得超过1024个赞
知道答主
回答量:3346
采纳率:66%
帮助的人:173万
展开全部

数学归纳法证明步骤

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式