两个无穷小的商是否一定是无穷小,举例说明
3个回答
展开全部
不一定,无穷小分阶级。同阶无穷小相除为常数,高阶除以低阶为0,低阶除高阶为无穷。
当x趋于0时,lim x, lim x^2, lim 2x^2,lim x^3都趋于,但是(lim x)/(lim x^2)=lim x/(x^2)=lim 1/x=无穷,这就是x趋于0时,x为低阶无穷小,x^2为高阶无穷小。同理lim x^2和lim 2x^2为同阶无穷小,相除为1/2.lim x^2和lim x^3相除为0。
扩展资料
两个无穷小的比较本质上是看两个东西趋向于无穷小的速度谁更快,谁快谁小。所以两个无穷小的商可以是一个常数,也就是大家趋向无穷小的速度差不多,也可以是无穷小,也就是分子比分母趋向无穷小的速度快得多,甚至还可以是无穷大,也就是分子比分母趋向无穷小的速度慢得多。
无穷小不是一个“很小的”数。无穷小是一个极限为0的变量。自然的,在说无穷小的时候,不仅要指明函数,还要指明自变量的趋近过程。比如,我们说1/x是x趋于无穷大时的无穷小。
展开全部
同济大学第七版《高等数学》第一章第4节习题第1题解答。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询