用极限的定义证明 lim(x-x^3)/(x+1)=-2 x趋向于-1
1个回答
展开全部
(x-x³)/(1+x)
=x(1-x²)/(1+x)
=x(1-x)
=x-x²
对於任意E>0,|x-x²+2|=|x-2|*|x+1|
∵|x-2|=|x+1-3|≤|x+1|+3
∴限定0<|x+1|<1,即-2<x<0且x≠-1
则|x-2|≤|x+1|+3<4
∴|x-x²+2|<4|x+1|<E,|x+1|<E/4
∴取δ=min{1,E/4},则当0<|x+1|<δ时,有|x-x²+2|<E
∴lim(x→-1)(x-x³)/(x+1)=-2
=x(1-x²)/(1+x)
=x(1-x)
=x-x²
对於任意E>0,|x-x²+2|=|x-2|*|x+1|
∵|x-2|=|x+1-3|≤|x+1|+3
∴限定0<|x+1|<1,即-2<x<0且x≠-1
则|x-2|≤|x+1|+3<4
∴|x-x²+2|<4|x+1|<E,|x+1|<E/4
∴取δ=min{1,E/4},则当0<|x+1|<δ时,有|x-x²+2|<E
∴lim(x→-1)(x-x³)/(x+1)=-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |