2016-10-24
展开全部
f[(1-x)/(x+1)]=x
令t=(1-x)/(x+1) = (-1-x+2)/(x+1) = -1 + 2/(x+1) ≠ -1
则t+1=2/(x+1)
x+1=2/(t+1)
x=2/(t+1)-1=(1-t)/(1+t)
f(t)= (1-t)/(1+t),其中t≠-1
即:
f(x)= (1-x)/(1+x),其中x≠-1
令t=(1-x)/(x+1) = (-1-x+2)/(x+1) = -1 + 2/(x+1) ≠ -1
则t+1=2/(x+1)
x+1=2/(t+1)
x=2/(t+1)-1=(1-t)/(1+t)
f(t)= (1-t)/(1+t),其中t≠-1
即:
f(x)= (1-x)/(1+x),其中x≠-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询