20-19+18-17+...+4-3+2-1用简便方法算
简便方法如下:
通过观察发现像(20-19)这样的组合总共有10组,并且(20-19)=1,所以结果为10×1=10
拓展内容:
数学怎样找规律
一、简介
找规律填空的意义实际上在于加强对于一般性的数列规律的熟悉,虽然它有很多解,但主要是培养你寻找数列一般规律和猜测数列通项的能力(即运用不完全归纳法的能力),以便于在碰到一些不好通过一般方法求通项的数列时,能够通过前几项快速准确地猜测到这个数列的通项公式,然后再用数学归纳法或反证法或其它方法加以证明,绕过正面的大山,快速地得到其通项公式。所以找规律填空还是有助于我们增强解一些有难度又有特点的数列的。
1,2,4,7,11,16,(22),(29), ——相差为:1,2,3,4,5,6,…
2,5,10,17,26,(37),(50), ——相差为:3,5,7,9,…
0,3,8,15,24,(35),(48),——相差为:3,5,7,9,…
找规律填空:9-1=8,16-4=12,25-9=16,36-16=20,49-25=24.
二、方法
1、基本方法——看增幅
①如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2
②如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。
基本思路是:
1、求出数列的第n-1位到第n位的增幅;
2、求出第1位到第n位的总增幅;
3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1
所以,第n位数是:2+ n2-1= n2+1
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
②增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.
③增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
2、基本技巧
①标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包括序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是1002-1,第n个数是n2-1。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。
序列号:1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项n2-1,第100项是1002-1。
②公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n有关。
例如:1,9,25,49,(81),(121),的第n项为((2n-1)2),
1,2,3,4,5......,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。
③看例题:
A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且............即:n3+1
B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:2n
④有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用①,②,③技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列:0、3、8、15、24……,序列号:1、2、3、4、5 分析观察可得,新数列的第n项为:n2-1,所以题中数列第n项为:(n2-1)+2=n2+1
⑤有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例: 4,16,36,64,?,144,196,…?(第一百个数)
同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方。得到新数列第n项即n2,原数列是同除以4得到的新数列,所以求出新数列n的公式后再乘以4即,4 n2,则求出第一百个数为4*1002=40000。
⑥同技巧④,⑤一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、除的不太常见。
⑦观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
3、基本步骤
①先看增幅是否相等,如相等,用基本方法(一)解题。
②如不相等,综合运用技巧(一)、(二)、(三)找规律
③如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律
2024-04-11 广告
20-19+18-17+...4-3+2-1
=(20-19)+(18-17)+...(4-3)+(2-1)
=1+1+……+1
=10
拓展资料:
20-19+18-17+...4-3+2-1这个计算公式中一共是二十个数字,用括号将相减的数字括起来,先计算括号中的数字,答案都是1,一共十个相加就是10。
20-19+18-17+.+4-3+2-1的简便运算
20-19+18-17+...+4-3+2-1
=(20-19)+(18-17)+...+(4-3)+(2-1)
=1*(20/2)
=1*10
=10
拓展资料
简便计算是一种特殊的计算,它运用了运算定律与数字的基本性质,从而使计算简便,使一个很复杂的式子变得很容易计算出得数。
减法1
a-b-c=a-(b+c)
减法2
a-b-c=a-c-b
除法1
a÷b÷c=a÷(b×c)
除法2
a÷b÷c=a÷c÷b
=1x10
=10
20-19+18-17+...+4-3+2-1用
=(20-19)+(18-17)+...+(4-3)+(2-1)
=1*10
=10