为什么在python里推荐使用多进程而不是多线程
2个回答
展开全部
监控一个信号就起一个线程与进程处理。这样的逻辑是不太合适的。所有的资源都是有限的,如果这样浪费很快会资源管理失控。
常规的做法是起一个线程池,或者是进程池。 使用线程还是进程取决于你处理的信号的类型。如果计算量大,则需要进程池,如果只是设备等待,比如网络数据收发,则线程也勉强够用。
信号过来后处理方法有两种,一种是实时处理,这个没有好办法,可以用“微线程”的办法做,尽量减少处理周期。另外一种是允许少量的延迟。那么通常的做法是用队列。将信号放到线程或者是进程池的消息队列里。然后再由后者分配。
还有一种高效的处理方法,根据信号的值做hash,然后自动分发到不同的CPU或者是服务器。这个就算是大规模并发处理机制。
通常情况下,比如一个WEB服务器,它需要获取一个请求,然后处理响应,可以使用线程模型,或者是进程模型。也是使用典型的池的方法。一个Pool的大于,取决于你的计算 机的计算 能力,内存大小,以及你的并发访问数量。
所要要启用多少个呢?假设你的一个信号的处理周期是1秒,你同时有100个信号进来,那么就需要100个线程或者是进程。
常规的做法是起一个线程池,或者是进程池。 使用线程还是进程取决于你处理的信号的类型。如果计算量大,则需要进程池,如果只是设备等待,比如网络数据收发,则线程也勉强够用。
信号过来后处理方法有两种,一种是实时处理,这个没有好办法,可以用“微线程”的办法做,尽量减少处理周期。另外一种是允许少量的延迟。那么通常的做法是用队列。将信号放到线程或者是进程池的消息队列里。然后再由后者分配。
还有一种高效的处理方法,根据信号的值做hash,然后自动分发到不同的CPU或者是服务器。这个就算是大规模并发处理机制。
通常情况下,比如一个WEB服务器,它需要获取一个请求,然后处理响应,可以使用线程模型,或者是进程模型。也是使用典型的池的方法。一个Pool的大于,取决于你的计算 机的计算 能力,内存大小,以及你的并发访问数量。
所要要启用多少个呢?假设你的一个信号的处理周期是1秒,你同时有100个信号进来,那么就需要100个线程或者是进程。
展开全部
1、GIL是什么?
GIL的全称是Global
Interpreter
Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定。
2、每个CPU在同一时间只能执行一个线程(在单核CPU下的多线程其实都只是并发,不是并行,并发和并行从宏观上来讲都是同时处理多路请求的概念。但并发和并行又有区别,并行是指两个或者多个事件在同一时刻发生;而并发是指两个或多个事件在同一时间间隔内发生。)
在Python多线程下,每个线程的执行方式:
1、获取GIL
2、执行代码直到sleep或者是python虚拟机将其挂起。
3、释放GIL
可见,某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是“通行证”,并且在一个python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。
在Python2.x里,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100(ticks可以看作是Python自身的一个计数器,专门做用于GIL,每次释放后归零,这个计数可以通过
sys.setcheckinterval
来调整),进行释放。
而每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。并且由于GIL锁存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行),这就是为什么在多核CPU上,python的多线程效率并不高。
那么是不是python的多线程就完全没用了呢?
在这里我们进行分类讨论:
1、CPU密集型代码(各种循环处理、计数等等),在这种情况下,由于计算工作多,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。
2、IO密集型代码(文件处理、网络爬虫等),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。所以python的多线程对IO密集型代码比较友好。
GIL的全称是Global
Interpreter
Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定。
2、每个CPU在同一时间只能执行一个线程(在单核CPU下的多线程其实都只是并发,不是并行,并发和并行从宏观上来讲都是同时处理多路请求的概念。但并发和并行又有区别,并行是指两个或者多个事件在同一时刻发生;而并发是指两个或多个事件在同一时间间隔内发生。)
在Python多线程下,每个线程的执行方式:
1、获取GIL
2、执行代码直到sleep或者是python虚拟机将其挂起。
3、释放GIL
可见,某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是“通行证”,并且在一个python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。
在Python2.x里,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100(ticks可以看作是Python自身的一个计数器,专门做用于GIL,每次释放后归零,这个计数可以通过
sys.setcheckinterval
来调整),进行释放。
而每次释放GIL锁,线程进行锁竞争、切换线程,会消耗资源。并且由于GIL锁存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程才能执行),这就是为什么在多核CPU上,python的多线程效率并不高。
那么是不是python的多线程就完全没用了呢?
在这里我们进行分类讨论:
1、CPU密集型代码(各种循环处理、计数等等),在这种情况下,由于计算工作多,ticks计数很快就会达到阈值,然后触发GIL的释放与再竞争(多个线程来回切换当然是需要消耗资源的),所以python下的多线程对CPU密集型代码并不友好。
2、IO密集型代码(文件处理、网络爬虫等),多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。所以python的多线程对IO密集型代码比较友好。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询