2个回答
展开全部
(4)
lim(x->0+) f(x)
=lim(x->0+) (x^2+2)
=2
lim(x->0-) f(x)
=lim(x->0-) tanαx/x
=α
=>α=2
(5)
n/(n^2+nπ)≤ 1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ) ≤ n/(n^2+π)
lim(n->∞ ) n/(n^2+nπ) =0
lim(n->∞ ) n/(n^2+π) =0
=>
lim(n->∞ ) [ 1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ) ] =0
(6)
xn is increasign
xn is bounded
lim(n->∞) xn = L
x(n+1) = √(6+xn )
lim(n->∞) x(n+1) = lim(n->∞)√(6+xn )
L =√(6+L )
L^2-L -6=0
(L-3)(L+2)=0
L=3
=>lim(n->∞) xn = L =3
lim(x->0+) f(x)
=lim(x->0+) (x^2+2)
=2
lim(x->0-) f(x)
=lim(x->0-) tanαx/x
=α
=>α=2
(5)
n/(n^2+nπ)≤ 1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ) ≤ n/(n^2+π)
lim(n->∞ ) n/(n^2+nπ) =0
lim(n->∞ ) n/(n^2+π) =0
=>
lim(n->∞ ) [ 1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ) ] =0
(6)
xn is increasign
xn is bounded
lim(n->∞) xn = L
x(n+1) = √(6+xn )
lim(n->∞) x(n+1) = lim(n->∞)√(6+xn )
L =√(6+L )
L^2-L -6=0
(L-3)(L+2)=0
L=3
=>lim(n->∞) xn = L =3
2017-10-11
展开全部
我不是老大,也不会解
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询