求微分方程的通解,要详细步骤谢谢
1个回答
展开全部
由dy/dx+xy=0得dy/y=-xdx,
∴lny=-x^2/2+c,
y=e^(-x^2/2+c),
设y=e^[-x^2/2+c(x)],则y'=[-x+c'(x)]e^[-x^2/2+c(x)],代入y'+xy=xe^(-x^2)①得
[-x+c'(x)]e^[-x^2/2+c(x)]+xe^[-x^2/2+c(x)]=xe^(-x^2),
化简得e^c(x)*c'(x)=xe^(-x^2/2),
积分得e^c(x)=-e^(-x^2/2),无解。
仅供参考。
∴lny=-x^2/2+c,
y=e^(-x^2/2+c),
设y=e^[-x^2/2+c(x)],则y'=[-x+c'(x)]e^[-x^2/2+c(x)],代入y'+xy=xe^(-x^2)①得
[-x+c'(x)]e^[-x^2/2+c(x)]+xe^[-x^2/2+c(x)]=xe^(-x^2),
化简得e^c(x)*c'(x)=xe^(-x^2/2),
积分得e^c(x)=-e^(-x^2/2),无解。
仅供参考。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询