求y=(sinx)∧x的导数
解:
令t=lny,则dy=e^t
y'=e^t ·zhuant'
t'=(lny)'
=[ln(sinx)^x]'
=[xln(sinx)]'
=ln(sinx)+xcosx/sinx
=ln(sinx)+x·cotx
y'=[ln(sinx)+x·cotx]·e^[(sinx)^x]
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C。
解:
令t=lny,则dy=e^t
y'=e^t ·zhuant'
t'=(lny)'
=[ln(sinx)^x]'
=[xln(sinx)]'
=ln(sinx)+xcosx/sinx
=ln(sinx)+x·cotx
y'=[ln(sinx)+x·cotx]·e^[(sinx)^x]
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
这样指数部分就可以拿到ln前面,变成相乘关系了。
x^n同理指数必须是常数
所以书上的这两个公式都不能用
y=(sinx)^x=e^(xln|sinx|)
再用复合函数求导
要不然就用取对数求导法
----------------------------
复合函数求导
就是把复合函数拆成一系列简单函数
各自求导然后相乘
这个题外层函数y=u^x求导的时候也是要用基本公式的
而(a^x)'=(a^x)lna要求底数a是常数(公式后面有括号说明吧)
底数不是常数就不能用
而这个u=sinx本身不是常数
而是一个中间变量,变量...
所以不行
-----------------------------
方法1
两边同时取以e为底的对数
lny=xlnsinx
两边同时对x求导数
含有y的把y看成关于x的函数,复合函数求导
(1/y)*y'=1*lnsinx+x*(1/sinx)*(sinx)'
化简即y'/y=lnsinx+xcotx
解出y'来,再把右边的y带入
y'=y*(lnsinx+xcotx)=(sinx)^x*(lnsinx+xcotx)
方法2
写成e^xlnsinx再求导(略)
步骤比较复杂