线性代数矩阵,第三题,后面两个怎么证明
1个回答
展开全部
(1) n = 2 时,|A1| = - |A| , |A2| = - |A^T| = - |A| ;
n = 3 时,|A1| = - |A| , |A2| = - |A^T| = - |A| ;
n = 4 时,|A1| = (-1)^2 |A| = |A|, |A2| = (-1)^2 |A^T| = |A| ;
n = 5 时,|A1| = (-1)^2 |A| = |A|, |A2| = (-1)^2 |A^T| = |A| ;
........................................................
|A1| = |A2| = (-1)^[(1/2)n(n-1)] |A| .
(2) A3 相当于 A 变成 A2,再按 A2 方法变化,故
|A3| = (-1)^[(1/2)n(n-1)] (-1)^[(1/2)n(n-1)] |A| = |A|
n = 3 时,|A1| = - |A| , |A2| = - |A^T| = - |A| ;
n = 4 时,|A1| = (-1)^2 |A| = |A|, |A2| = (-1)^2 |A^T| = |A| ;
n = 5 时,|A1| = (-1)^2 |A| = |A|, |A2| = (-1)^2 |A^T| = |A| ;
........................................................
|A1| = |A2| = (-1)^[(1/2)n(n-1)] |A| .
(2) A3 相当于 A 变成 A2,再按 A2 方法变化,故
|A3| = (-1)^[(1/2)n(n-1)] (-1)^[(1/2)n(n-1)] |A| = |A|
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询