设函数f(x)处处连续求导 求 a,b
1个回答
展开全部
f(x)
=[1-√(1-x)]/x ; x<0
=ax+b ; x≥0
f(0-)
= lim(x->0) [1-√(1-x)]/x (0/0)
= lim(x->0) 1/[2√(1-x)]
=1/2
f(0+) = b
f(0-)=f(0+)
=> b =1/2
f'(0+)
= lim(h->0) ( ah + 1/2 - f(0) ) /h
=lim(h->0) (ah+ 1/2 - 1/2 )/h
= a
f'(0-)
= lim(h->0) [ f(0) - [1-√(1-h)]/h ] /h
= lim(h->0) [ 1/2 - [1-√(1-h)]/h ] /h
= lim(h->0) [ h - 2[1-√(1-h)] ] /(2h^2)
= lim(h->0) [(1/4) h^2 ] /(2h^2) ( 等价无穷小 )
=1/8
=> a= 1/8
h->0
分子:
√(1-h) ~ 1 - (1/2)h +(1/8)h^2
2[1-√(1-h)] ~ h - (1/4)h^2
h- 2[1-√(1-h)] ~ (1/4)h^2
=[1-√(1-x)]/x ; x<0
=ax+b ; x≥0
f(0-)
= lim(x->0) [1-√(1-x)]/x (0/0)
= lim(x->0) 1/[2√(1-x)]
=1/2
f(0+) = b
f(0-)=f(0+)
=> b =1/2
f'(0+)
= lim(h->0) ( ah + 1/2 - f(0) ) /h
=lim(h->0) (ah+ 1/2 - 1/2 )/h
= a
f'(0-)
= lim(h->0) [ f(0) - [1-√(1-h)]/h ] /h
= lim(h->0) [ 1/2 - [1-√(1-h)]/h ] /h
= lim(h->0) [ h - 2[1-√(1-h)] ] /(2h^2)
= lim(h->0) [(1/4) h^2 ] /(2h^2) ( 等价无穷小 )
=1/8
=> a= 1/8
h->0
分子:
√(1-h) ~ 1 - (1/2)h +(1/8)h^2
2[1-√(1-h)] ~ h - (1/4)h^2
h- 2[1-√(1-h)] ~ (1/4)h^2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
TableDI
2024-07-18 广告
2024-07-18 广告
仅需3步!不写公式自动完成Excel vlookup表格匹配!Excel在线免,vlookup工具,点击16步自动完成表格匹配,无需手写公式,免费使用!...
点击进入详情页
本回答由TableDI提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询