√(1+x^2 )的 不定积分怎么求?
如下:
∫√(1+x^2 )dx,令x=tant,原式=∫sect·dtant (注:本式还等于∫sec³tdt)。
所以2×∫sect·dtant=sect·tant-∫sect·dt。
=sect·tant-ln|sect+tant|+2c。
=x√(1+x²)-ln|x+√(1+x²)|+2c。
即原式=1/2x√(1+x²)-1/2ln|x+√(1+x²)|+c。
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′= f。
不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。
令x=tant,
原式=∫sect·dtant (注:本式还等于∫sec³tdt)
=sect·tant-∫tantdsect
=sect·tant-∫tant·tantsectdt
=sect·tant-∫(sec²t-1)sectdt
=sect·tant-∫(sec³t-sect)dt
=sect·tant-∫sec³tdt+∫sectdt
=sect·tant-∫sect·dtant +∫sectdt
所以
2×∫sect·dtant=sect·tant-∫sect·dt
=sect·tant-ln|sect+tant|+2c
=x√(1+x²)-ln|x+√(1+x²)|+2c
即
原式=1/2x√(1+x²)-1/2ln|x+√(1+x²)|+c
∫√(1+x^2 )dx
令x=tant,
原式=∫sect·dtant (注:本式还等于∫sec³tdt)
=sect·tant-∫tantdsect
=sect·tant-∫tant·tantsectdt
=sect·tant-∫(sec²t-1)sectdt
=sect·tant-∫(sec³t-sect)dt
=sect·tant-∫sec³tdt+∫sectdt
=sect·tant-∫sect·dtant +∫sectdt
所以
2×∫sect·dtant=sect·tant-∫sect·dt
=sect·tant-ln|sect+tant|+2c
=x√(1+x²)-ln|x+√(1+x²)|+2c
即
原式=1/2x√(1+x²)-1/2ln|x+√(1+x²)|+c
记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。
扩展资料
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
广告 您可能关注的内容 |