5个回答
展开全部
q ≠ 1 时
a<n+1> = 5S<n> + 1 = 5a1(q^n-1)/(q-1) + 1 (1)
a<n> = 5S<n-1> + 1 = 5a1[q^(n-1)-1]/(q-1) + 1 (2)
两式相除 (1)/(2) 得
q = [5a1(q^n-1)/(q-1) + 1] / {5a1[q^(n-1)-1]/(q-1) + 1}
= [5a1(q^n-1) + q-1] / {5a1[q^(n-1)-1] + q-1}
5a1(q^n-1) + q-1 = q {5a1[q^(n-1)-1] + q-1}
5a1q^n-5a1 + q-1 = 5a1q^n-5a1q + q^2-q
5a1(q-1) = q^2-2q+1 = (q-1)^2
5a1 = q-1 (3)
由(1) a<2> = 5S<1> + 1 = 5a1+ 1,
即 a1q = 5a1+1, a1(q-5) = 1 (4)
(3)(4)联立解得 q = 6, q = 0(舍弃)
a<n+1> = 5S<n> + 1 = 5a1(q^n-1)/(q-1) + 1 (1)
a<n> = 5S<n-1> + 1 = 5a1[q^(n-1)-1]/(q-1) + 1 (2)
两式相除 (1)/(2) 得
q = [5a1(q^n-1)/(q-1) + 1] / {5a1[q^(n-1)-1]/(q-1) + 1}
= [5a1(q^n-1) + q-1] / {5a1[q^(n-1)-1] + q-1}
5a1(q^n-1) + q-1 = q {5a1[q^(n-1)-1] + q-1}
5a1q^n-5a1 + q-1 = 5a1q^n-5a1q + q^2-q
5a1(q-1) = q^2-2q+1 = (q-1)^2
5a1 = q-1 (3)
由(1) a<2> = 5S<1> + 1 = 5a1+ 1,
即 a1q = 5a1+1, a1(q-5) = 1 (4)
(3)(4)联立解得 q = 6, q = 0(舍弃)
展开全部
an+1=Sn+1-Sn=5Sn+1,故Sn+1=6Sn+1,显然q≠1,而Sn=a1(1-q^n)/(1-q),带入上式可得q=6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由题意得,
为等比数列
综上所述,答案为:
为等比数列
综上所述,答案为:
追问
你的答案呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询