2个回答
展开全部
tan(A+B) = (tanA+tanB)/(1 - tanA.tanB)
A+B = arctan [(tanA+tanB)/(1 - tanA.tanB) ]
A= arctan(e^x), B=arctan(e^(-x))
arctan(e^x) +arctan(e^(-x))
=arctan [(e^x+e^(-x))/(1 - e^x.e^(-x)) ]
=arctan(∞)
=π/2
∫(-π/2->π/2) (sinx)^2. [arctan(e^x) +arctan(e^(-x)) ] dx
=2∫(0->π/2) (sinx)^2. [arctan(e^x) +arctan(e^(-x)) ] dx
=2∫(0->π/2) (sinx)^2. [π/2 ] dx
=π ∫(0->π/2) (sinx)^2 dx
=(π/2) ∫(0->π/2) (1-cos2x) dx
=(π/2) [ x -(1/2)sin2x]|(0->π/2)
=(1/4)π^2
A+B = arctan [(tanA+tanB)/(1 - tanA.tanB) ]
A= arctan(e^x), B=arctan(e^(-x))
arctan(e^x) +arctan(e^(-x))
=arctan [(e^x+e^(-x))/(1 - e^x.e^(-x)) ]
=arctan(∞)
=π/2
∫(-π/2->π/2) (sinx)^2. [arctan(e^x) +arctan(e^(-x)) ] dx
=2∫(0->π/2) (sinx)^2. [arctan(e^x) +arctan(e^(-x)) ] dx
=2∫(0->π/2) (sinx)^2. [π/2 ] dx
=π ∫(0->π/2) (sinx)^2 dx
=(π/2) ∫(0->π/2) (1-cos2x) dx
=(π/2) [ x -(1/2)sin2x]|(0->π/2)
=(1/4)π^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询