![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
求函数值域,
设函数fx=|√3sinx+cosx|+√3sinxcosx-1/2cos2x,若x属于【-派/3,派/2,求函数的值域】...
设函数fx=|√3sinx+cosx|+√3sinxcosx-1/2cos2x,若x属于【-派/3,派/2,求函数的值域】
展开
2个回答
展开全部
f(x)=|√3sinx+cosx|+√3sinxcosx-1/2cos2x
=2|sinxcosπ/6+sinπ/6cosx|+√3/2 sin2x-1/2cos2x
=2|sin(x+π/6)|+sin2xsinπ/3-cosπ/3cos2x
=2|sin(x+π/6)|-cos(2x+π/3)
=2|sin(x+π/6)|-cos2(x+π/6)
=2|sin(x+π/6)|+2sin²(x+π/6)-1
=2(|sin(x+π/6)|+1/2)²-3/2
因为x∈[-π/3,π/2],所以 - 1/2≤sin(x+π/6)≤1
0≤|sin(x+π/6)|≤1
令t=|sin(x+π/6)|,则0≤t≤1
g(t)=f(x)=2(t+1/2)²-3/2,在0≤t≤1单调递增
所以g(0)≤f(x)≤g(1)
g(0)=-1,g(1)=3
故f(x)的值域为[-1,3]
=2|sinxcosπ/6+sinπ/6cosx|+√3/2 sin2x-1/2cos2x
=2|sin(x+π/6)|+sin2xsinπ/3-cosπ/3cos2x
=2|sin(x+π/6)|-cos(2x+π/3)
=2|sin(x+π/6)|-cos2(x+π/6)
=2|sin(x+π/6)|+2sin²(x+π/6)-1
=2(|sin(x+π/6)|+1/2)²-3/2
因为x∈[-π/3,π/2],所以 - 1/2≤sin(x+π/6)≤1
0≤|sin(x+π/6)|≤1
令t=|sin(x+π/6)|,则0≤t≤1
g(t)=f(x)=2(t+1/2)²-3/2,在0≤t≤1单调递增
所以g(0)≤f(x)≤g(1)
g(0)=-1,g(1)=3
故f(x)的值域为[-1,3]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询