问一道高数题 若x->0时,αxα与x2(ex-1)+2x4+3x5是同阶无穷小,则α=?
2个回答
展开全部
x->0
e^x = 1+x+(1/2)x^2 +(1/6)x^3 +o(x^3)
x^2.(e^x -1) =x^3+(1/2)x^4 +(1/6)x^5 +o(x^5)
x^2.(e^x -1) +2x^4 +3x^5
=[x^3+(1/2)x^4 +(1/6)x^5 +o(x^5)] +2x^4 +3x^5
=x^3 +o(x^3)
=>α=3
e^x = 1+x+(1/2)x^2 +(1/6)x^3 +o(x^3)
x^2.(e^x -1) =x^3+(1/2)x^4 +(1/6)x^5 +o(x^5)
x^2.(e^x -1) +2x^4 +3x^5
=[x^3+(1/2)x^4 +(1/6)x^5 +o(x^5)] +2x^4 +3x^5
=x^3 +o(x^3)
=>α=3
更多追问追答
追问
答案是α=3
追答
α=3, 一时手快!
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询