2020-02-07 · 知道合伙人教育行家
关注
展开全部
用两数和(两数差)的平方公式,分步配方:
1+1/n²+1/(n+1)²
= (1+1/n²) + 1/(n+1)²
= (1+1/n²+2/n) -2/n+ 1/(n+1)²
= (1+1/n)² -2/n+ 1/(n+1)²
= [(n+1)/n]² -2/n+ 1/(n+1)²
= [(n+1)/n]² -2*(n+1)/n*1/(n+1) + 1/(n+1)²
= { (n+1)/n - 1/(n+1) }²
= { 1 + 1/n - 1/(n+1) }²
∴ √ { 1+1/n²+1/(n+1)² } = 1 + 1/n - 1/(n+1)
B正确
1+1/n²+1/(n+1)²
= (1+1/n²) + 1/(n+1)²
= (1+1/n²+2/n) -2/n+ 1/(n+1)²
= (1+1/n)² -2/n+ 1/(n+1)²
= [(n+1)/n]² -2/n+ 1/(n+1)²
= [(n+1)/n]² -2*(n+1)/n*1/(n+1) + 1/(n+1)²
= { (n+1)/n - 1/(n+1) }²
= { 1 + 1/n - 1/(n+1) }²
∴ √ { 1+1/n²+1/(n+1)² } = 1 + 1/n - 1/(n+1)
B正确
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
√1+1/n²+1/(n+1)²
=√(n²+1+2n/n²) -2/n+ 1/(n+1)²
=√(n+1)²/n² -2/n+ 1/(n+1)²
=√(n+1)²/n² -[(2(n+1)/n)×1/(n+1)]× 1/(n+1)²
=√[(n+1)/n - 1/(n+1) ]²
=(n+1)/n - 1/(n+1)
=1+1/n-1/(n+1)
=√(n²+1+2n/n²) -2/n+ 1/(n+1)²
=√(n+1)²/n² -2/n+ 1/(n+1)²
=√(n+1)²/n² -[(2(n+1)/n)×1/(n+1)]× 1/(n+1)²
=√[(n+1)/n - 1/(n+1) ]²
=(n+1)/n - 1/(n+1)
=1+1/n-1/(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询