11个回答
展开全部
这问题我实在没见过,要是学会了把答案告诉我哈
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令t=arccosx t∈(0,π)
则原式=∫(cost)^3*t/sintdcost
=-∫(cost)^2cost*tdt
=-∫[1-(sint)^2]cost*tdt
=-∫(sint+cost*t)dt+∫(sint)^2cost*tdt+∫sintdt
=-tsint-cost+∫(sint)^2cost*tdt
=-tsint-cost-∫sin2t(-sint)*t/2dt+∫sin2tcost/2dt
-∫sin2tcost/2dt+∫cos2tcost*t-∫cos2tcost*t
=-tsint-cost-sin2tcost*t/2+∫sin2tcost/2dt+∫cos2tcost*tdt
=-tsint-cost-sin2tcost*t/2+∫sintcostcostdt
+∫(cost^2-sint^2)cost*tdt
=-tsint-cost-sin2tcost*t/2-∫costcostdcost
+∫(2cost^2-1)cost*tdt
=-tsint-cost-sin2tcost*t/2-cost^3/3+2∫(cost)^3*tdt-∫cost*tdt
=-tsint-cost-sin2tcost*t/2-cost^3/3+2∫(cost)^3*tdt-∫cost*tdt
-∫sintdt+∫sintdt
=-tsint-cost-sin2tcost*t/2-cost^3/3+2∫(cost)^3*tdt
-∫(cost*t+sint)dt+∫sintdt
=-tsint-cost-sin2tcost*t/2-cost^3/3+2∫(cost)^3*tdt
-tsint-cost
这时得
-3∫(cost)^3*tdt=-2tsint-2cost-cost^3/3-sin2tcost*t/2
则-∫(cost)^3*tdt=(-2tsint-2cost-sin2tcost*t/2-cost^3/3)/3
在把t代换成x即可.
则原式=∫(cost)^3*t/sintdcost
=-∫(cost)^2cost*tdt
=-∫[1-(sint)^2]cost*tdt
=-∫(sint+cost*t)dt+∫(sint)^2cost*tdt+∫sintdt
=-tsint-cost+∫(sint)^2cost*tdt
=-tsint-cost-∫sin2t(-sint)*t/2dt+∫sin2tcost/2dt
-∫sin2tcost/2dt+∫cos2tcost*t-∫cos2tcost*t
=-tsint-cost-sin2tcost*t/2+∫sin2tcost/2dt+∫cos2tcost*tdt
=-tsint-cost-sin2tcost*t/2+∫sintcostcostdt
+∫(cost^2-sint^2)cost*tdt
=-tsint-cost-sin2tcost*t/2-∫costcostdcost
+∫(2cost^2-1)cost*tdt
=-tsint-cost-sin2tcost*t/2-cost^3/3+2∫(cost)^3*tdt-∫cost*tdt
=-tsint-cost-sin2tcost*t/2-cost^3/3+2∫(cost)^3*tdt-∫cost*tdt
-∫sintdt+∫sintdt
=-tsint-cost-sin2tcost*t/2-cost^3/3+2∫(cost)^3*tdt
-∫(cost*t+sint)dt+∫sintdt
=-tsint-cost-sin2tcost*t/2-cost^3/3+2∫(cost)^3*tdt
-tsint-cost
这时得
-3∫(cost)^3*tdt=-2tsint-2cost-cost^3/3-sin2tcost*t/2
则-∫(cost)^3*tdt=(-2tsint-2cost-sin2tcost*t/2-cost^3/3)/3
在把t代换成x即可.
更多追问追答
追问
解释一下吧,别找作业帮,看不懂
追答
反三角函数是最难处理的。其次是根号式,因此处理反三角函数是首要任务,
方法为:利用换元法将其转化为三角函数。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询