请教大神求超详细步骤解析!♥ 1.求极限limx趋向于0√2+sinx(sinx-x)/tan³x
请教大神,求详细步骤解析!♥1.求极限limx趋向于0√2+sinx(sinx-x)/tan³x2.求极限limx趋向于+∞〔x²(e的1...
请教大神,求详细步骤解析!♥
1.求极限limx趋向于0√2+sinx(sinx-x)/tan³x
2.求极限limx趋向于+∞〔x²(e的1/x次方-1)-x〕 展开
1.求极限limx趋向于0√2+sinx(sinx-x)/tan³x
2.求极限limx趋向于+∞〔x²(e的1/x次方-1)-x〕 展开
1个回答
展开全部
(1)
根据泰勒展式
f(x) = f(0) +[f'(0)/1!]x +[f''(0)/2!]x^2+....+[f^(n)(0)/n!]x^n +....
sinx = x- (1/6)x^3 +o(x^3)
x->0
sinx= x-(1/6)x^3 +o(x^3)
sinx -x =(1/6)x^3 +o(x^3)
lim(x->0) √(2+sinx) (sinx-x)/ (tanx)^3
=√2.lim(x->0) (sinx-x)/ (tanx)^3
=√2.lim(x->0) (sinx-x)/ x^3
=√2.lim(x->0) (1/6)x^3/ x^3
=√2/6
(2)
let
u=1/x
lim(x->∞) [ x^2. (e^(1/x) -1 ) -x ]
=lim(u->0) [ (1/u)^2. (e^u -1 ) -1/u ]
=lim(u->0) [(e^u -1 ) -u]/u^2
根据泰勒展式
f(x) = f(0) +[f'(0)/1!]x +[f''(0)/2!]x^2+....+[f^(n)(0)/n!]x^n +....
sinx = x- (1/6)x^3 +o(x^3)
x->0
sinx= x-(1/6)x^3 +o(x^3)
sinx -x =(1/6)x^3 +o(x^3)
lim(x->0) √(2+sinx) (sinx-x)/ (tanx)^3
=√2.lim(x->0) (sinx-x)/ (tanx)^3
=√2.lim(x->0) (sinx-x)/ x^3
=√2.lim(x->0) (1/6)x^3/ x^3
=√2/6
(2)
let
u=1/x
lim(x->∞) [ x^2. (e^(1/x) -1 ) -x ]
=lim(u->0) [ (1/u)^2. (e^u -1 ) -1/u ]
=lim(u->0) [(e^u -1 ) -u]/u^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询