大数据方面核心技术有哪些?

 我来答
IT168
2022-10-28 · 百度认证:IT168官方账号,优质数码领域创作者
IT168
IT168是中国最大的个人和企业IT产品选购、互动网站,每日提供最新的IT产品报价、促销行情、手机、平板、笔记本、相机和企业等50个频道提供最专业的产品选购和使用建议。
向TA提问
展开全部
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。
1、数据采集与预处理:FlumeNG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。
2、数据存储:Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。
3、数据清洗:MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算。
4、数据查询分析:Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供HQL(HiveSQL)查询功能。Spark启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。
加米谷大数据科技
2019-11-12 · 大数据人才培养的机构
加米谷大数据科技
成都加米谷大数据科技有限公司是一家专注于大数据人才培养的机构。公司由来自华为、京东、星环、勤智等国内知名企业的多位技术大牛联合创办。面向社会提供大数据、人工智能等前沿技术的培训业务。
向TA提问
展开全部

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。

1、数据采集与预处理:

Flume NG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。

2、数据存储:

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。

3、数据清洗:MapReduce作为Hadoop的查询引擎,用于大规模数据集的并行计算

4、数据查询分析:

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。

Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
栽种绝处的bx5ea
2020-11-24 · TA获得超过217个赞
知道小有建树答主
回答量:347
采纳率:100%
帮助的人:7万
展开全部

简单来说,从大数据的生命周期来看,无外乎四个方面:大数据采集、大数据预处理、大数据存储、大数据分析,共同组成了大数据生命周期里最核心的技术,下面分开来说:

  • 大数据采集

  • 大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。

  • 数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。

  • 网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。

  • 文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。

  • 大数据预处理

  • 大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。

  • 数据清理:指利用ETL等清洗工具,对有遗漏数据(缺少感兴趣的属性)、噪音数据(数据中存在着错误、或偏离期望值的数据)、不一致数据进行处理。

  • 数据集成:是指将不同数据源中的数据,合并存放到统一数据库的,存储方法,着重解决三个问题:模式匹配、数据冗余、数据值冲突检测与处理。

  • 数据转换:是指对所抽取出来的数据中存在的不一致,进行处理的过程。它同时包含了数据清洗的工作,即根据业务规则对异常数据进行清洗,以保证后续分析结果准确性。

  • 数据规约:是指在最大限度保持数据原貌的基础上,最大限度精简数据量,以得到较小数据集的操作,包括:数据方聚集、维规约、数据压缩、数值规约、概念分层等。

  • 大数据存储,指用存储器,以数据库的形式,存储采集到的数据的过程,包含三种典型路线:

  • 1、基于MPP架构的新型数据库集群

    采用Shared Nothing架构,结合MPP架构的高效分布式计算模式,通过列存储、粗粒度索引等多项大数据处理技术,重点面向行业大数据所展开的数据存储方式。具有低成本、高性能、高扩展性等特点,在企业分析类应用领域有着广泛的应用。

    较之传统数据库,其基于MPP产品的PB级数据分析能力,有着显著的优越性。自然,MPP数据库,也成为了企业新一代数据仓库的最佳选择。

    2、基于Hadoop的技术扩展和封装

    基于Hadoop的技术扩展和封装,是针对传统关系型数据库难以处理的数据和场景(针对非结构化数据的存储和计算等),利用Hadoop开源优势及相关特性(善于处理非结构、半结构化数据、复杂的ETL流程、复杂的数据挖掘和计算模型等),衍生出相关大数据技术的过程。

    伴随着技术进步,其应用场景也将逐步扩大,目前最为典型的应用场景:通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑,其中涉及了几十种NoSQL技术。

    3、大数据一体机

    这是一种专为大数据的分析处理而设计的软、硬件结合的产品。它由一组集成的服务器、存储设备、操作系统、数据库管理系统,以及为数据查询、处理、分析而预安装和优化的软件组成,具有良好的稳定性和纵向扩展性。

    四、大数据分析挖掘

    从可视化分析、数据挖掘算法、预测性分析、语义引擎、数据质量管理等方面,对杂乱无章的数据,进行萃取、提炼和分析的过程。

    1、可视化分析

    可视化分析,指借助图形化手段,清晰并有效传达与沟通信息的分析手段。主要应用于海量数据关联分析,即借助可视化数据分析平台,对分散异构数据进行关联分析,并做出完整分析图表的过程。

    具有简单明了、清晰直观、易于接受的特点。

    2、数据挖掘算法

    数据挖掘算法,即通过创建数据挖掘模型,而对数据进行试探和计算的,数据分析手段。它是大数据分析的理论核心。

    数据挖掘算法多种多样,且不同算法因基于不同的数据类型和格式,会呈现出不同的数据特点。但一般来讲,创建模型的过程却是相似的,即首先分析用户提供的数据,然后针对特定类型的模式和趋势进行查找,并用分析结果定义创建挖掘模型的最佳参数,并将这些参数应用于整个数据集,以提取可行模式和详细统计信息。

    3、预测性分析

    预测性分析,是大数据分析最重要的应用领域之一,通过结合多种高级分析功能(特别统计分析、预测建模、数据挖掘、文本分析、实体分析、优化、实时评分、机器学习等),达到预测不确定事件的目的。

    帮助分用户析结构化和非结构化数据中的趋势、模式和关系,并运用这些指标来预测将来事件,为采取措施提供依据。

    4、语义引擎

    语义引擎,指通过为已有数据添加语义的操作,提高用户互联网搜索体验。

    5、数据质量管理

    指对数据全生命周期的每个阶段(计划、获取、存储、共享、维护、应用、消亡等)中可能引发的各类数据质量问题,进行识别、度量、监控、预警等操作,以提高数据质量的一系列管理活动。

    以上是从大的方面来讲,具体来说大数据的框架技术有很多,这里列举其中一些:

    文件存储:Hadoop HDFS、Tachyon、KFS

    离线计算:Hadoop MapReduce、Spark

    流式、实时计算:Storm、Spark Streaming、S4、Heron

    K-V、NOSQL数据库:HBase、Redis、MongoDB

    资源管理:YARN、Mesos

    日志收集:Flume、Scribe、Logstash、Kibana

    消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ

    查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid

    分布式协调服务:Zookeeper

    集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager

    数据挖掘、机器学习:Mahout、Spark MLLib

    数据同步:Sqoop

    任务调度:Oozie

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
陕西新华电脑学校
2021-01-26 · 百度认证:陕西新华电脑软件培训学校官方账号
陕西新华电脑学校
陕西新华电脑软学校位于西咸新区秦汉新城兰池二路东段,隶属于新华教育集团,是经陕西省人力资源和社会保障厅批准成立的一所大型互联网教育学校,是陕西省专业的互联网人才培养基地,交通便利,学风醇厚
向TA提问
展开全部
中国人工智能发展迅猛,政府对人工智能也是很重视的。人工智能的专业方向有科学研究、工程开发、计算机方向、软件工程、应用数学、电气自动化、通信、机械制造,人工智能的前景虽然很好,但是它的难度系数很高,目前人工智能的人才需求量很大,相比于其他技术岗位,竞争度降低,薪资相对来说是较高的,因此,现在是进入人工智能领域的大好时机。人工智能的发展前景还是很不错的,原因有几点,智能化是未来的重要趋势之一、产业互联网的发展必然带动人工智能的发展、人工智能技术将成为职场人的必备技能之一。

目前,人工智能在计算机领域得到了广泛的重视,我相信在未来的应用前景也会更加广泛。
  • 官方电话
  • 官方服务
    • 官方网站
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
凛冬素尘8f68bf
2018-01-31 · TA获得超过291个赞
知道小有建树答主
回答量:435
采纳率:60%
帮助的人:68.7万
展开全部
总的来说大数据有5个部分。数据采集,数据存储,数据清洗,数据挖掘,数据可视化。还有新兴的实时流处理,可能还有别的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式